Advertisement

Comparison of Methods for Computing a Target Point for Aspirations and Biopsies

  • Adam CiszkiewiczEmail author
  • Grzegorz Milewski
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 831)

Abstract

The aim of this study was to compare three methods for computing a target point for use in autonomous or semi-autonomous aspirations and biopsies. Given a 3D binary image of the object of interest, the procedures computed the target point. The following approaches were tested: the method #1 - center of mass, the method #2 - largest projection area + largest empty circle and the method #3 - largest empty circle + largest empty circle. Each procedure was tested on four cases obtained from Magnetic Resonance Imaging scans used to diagnose Baker’s cysts. The methods were analyzed and compared in terms of their safety and computation time. In terms of safety, the best results were obtained with the third procedure, which used the largest empty circle + largest empty circle combination. The second method - the largest projection area + largest empty circle - offered good compromise between safety and computation time. It can be used to estimate target points for medical tool path planning in aspiration or biopsy.

Keywords

Largest empty circle Center of mass Voxel 

References

  1. 1.
    Scheil-Adlung, X., Behrendt, T., Wong, L.: Health sector employment: a tracer indicator for universal health coverage in national Social Protection Floors. Hum. Resour. Health 13, 1–8 (2015).  https://doi.org/10.1186/s12960-015-0056-9CrossRefGoogle Scholar
  2. 2.
    Ciszkiewicz, A., Milewski, G.: A novel kinematic model for a functional spinal unit and a lumbar spine. Acta Bioeng. Biomech. 18 (2016).  https://doi.org/10.5277/abb-00324-2015-03
  3. 3.
    Sancisi, N., Parenti-Castelli, V.: A 1-Dof parallel spherical wrist for the modelling of the knee passive motion. Mech. Mach. Theory 45, 658–665 (2010).  https://doi.org/10.1016/j.mechmachtheory.2009.11.009CrossRefzbMATHGoogle Scholar
  4. 4.
    Pappalardo, O.A., Sturla, F., Onorati, F., Puppini, G., Selmi, M., Luciani, G.B., Faggian, G., Redaelli, A., Votta, E.: Mass-spring models for the simulation of mitral valve function: looking for a trade-off between reliability and time-efficiency. Med. Eng. Phys. 47, 93–104 (2017).  https://doi.org/10.1016/j.medengphy.2017.07.001CrossRefGoogle Scholar
  5. 5.
    Basafa, E., Farahmand, F.: Real-time simulation of the nonlinear visco-elastic deformations of soft tissues. Int. J. Comput. Assist. Radiol. Surg. 6, 297–307 (2011).  https://doi.org/10.1007/s11548-010-0508-6CrossRefGoogle Scholar
  6. 6.
    Cicek, Y., Duysak, A.: The modelling of interactions between organs and medical tools: a volumetric mass-spring chain algorithm. Comput. Methods Biomech. Biomed. Eng. 17, 488–496 (2014).  https://doi.org/10.1080/10255842.2012.694875CrossRefGoogle Scholar
  7. 7.
    Assi, K.C., Grenier, S., Parent, S., Labelle, H., Cheriet, F.: A physically based trunk soft tissue modeling for scoliosis surgery planning systems. Comput. Med. Imag. Graph. 40, 217–228 (2015).  https://doi.org/10.1016/j.compmedimag.2014.11.002CrossRefGoogle Scholar
  8. 8.
    Mohammadi, A., Ahmadian, A., Rabbani, S., Fattahi, E., Shirani, S.: A combined registration and finite element analysis method for fast estimation of intraoperative brain shift; phantom and animal model study. Int. J. Med. Robot. Comput. Assist. Surg. 13, e1792 (2017).  https://doi.org/10.1002/rcs.1792CrossRefGoogle Scholar
  9. 9.
    Villard, P.-F., Hammer, P.E., Perrin, D.P., del Nido, P.J., Howe, R.D.: Fast image-based mitral valve simulation from individualized geometry. Int. J. Med. Robot. Comput. Assist. Surg. 14, e1880 (2018).  https://doi.org/10.1002/rcs.1880CrossRefGoogle Scholar
  10. 10.
    Ciszkiewicz, A., Milewski, G.: Path planning for minimally-invasive knee surgery using a hybrid optimization procedure. Comput. Methods Biomech. Biomed. Eng. 21, 47–54 (2018).  https://doi.org/10.1080/10255842.2017.1423289CrossRefGoogle Scholar
  11. 11.
    Olszewski, R., Villamil, M.B., Trevisan, D.G., Nedel, L.P., Freitas, C.M.D.S., Reychler, H., Macq, B.: Towards an integrated system for planning and assisting maxillofacial orthognathic surgery. Comput. Methods Programs Biomed. 91, 13–21 (2008).  https://doi.org/10.1016/j.cmpb.2008.02.007CrossRefGoogle Scholar
  12. 12.
    Luboz, V., Ambard, D., Swider, P., Boutault, F., Payan, Y.: Computer assisted planning and orbital surgery: patient-related prediction of osteotomy size in proptosis reduction. Clin. Biomech. 20, 900–905 (2005).  https://doi.org/10.1016/j.clinbiomech.2005.05.017CrossRefGoogle Scholar
  13. 13.
    Adolphs, N., Haberl, E.-J., Liu, W., Keeve, E., Menneking, H., Hoffmeister, B.: Virtual planning for craniomaxillofacial surgery–7 years of experience. J. Craniomaxillofac. Surg. 42, e289–e295 (2014).  https://doi.org/10.1016/j.jcms.2013.10.008CrossRefGoogle Scholar
  14. 14.
    Napalkova, L., Rozenblit, J.W., Hwang, G., Hamilton, A.J., Suantak, L.: An optimal motion planning method for computer-assisted surgical training. Appl. Soft Comput. 24, 889–899 (2014).  https://doi.org/10.1016/j.asoc.2014.08.054CrossRefGoogle Scholar
  15. 15.
    Vrooijink, G.J., Abayazid, M., Patil, S., Alterovitz, R., Misra, S.: Needle path planning and steering in a three-dimensional non-static environment using two-dimensional ultrasound images. Int. J. Rob. Res. 33, 1361–1374 (2014).  https://doi.org/10.1177/0278364914526627CrossRefGoogle Scholar
  16. 16.
    Hassouna, M.S., Farag, A.A., Hushek, S.G.: 3D path planning for virtual endoscopy. Int. Congr. Ser. 1281, 115–120 (2005).  https://doi.org/10.1016/j.ics.2005.03.142CrossRefGoogle Scholar
  17. 17.
    Zarychta, P., Badura, P., Pietka, E.: Comparative analysis of selected classifiers in posterior cruciate ligaments computer aided diagnosis. Bull. Polish Acad. Sci. Tech. Sci. 65, 63–70 (2017).  https://doi.org/10.1515/bpasts-2017-0008CrossRefGoogle Scholar
  18. 18.
    Szwarc, P., Kawa, J., Rudzki, M., Pietka, E.: Automatic brain tumour detection and neovasculature assessment with multiseries MRI analysis. Comput. Med. Imag. Graph. 46, 178–190 (2015).  https://doi.org/10.1016/j.compmedimag.2015.06.002CrossRefGoogle Scholar
  19. 19.
    Shan, L., Zach, C., Charles, C., Niethammer, M.: Automatic atlas-based three-label cartilage segmentation from MR knee images. Med. Image Anal. 18, 1233–1246 (2014).  https://doi.org/10.1016/j.media.2014.05.008CrossRefGoogle Scholar
  20. 20.
    Araújo, T., Abayazid, M., Rutten, M.J.C.M., Misra, S.: Segmentation and three-dimensional reconstruction of lesions using the automated breast volume scanner (ABVS). Int. J. Med. Robot. Comput. Assist. Surg. (2016).  https://doi.org/10.1002/rcs.1767CrossRefGoogle Scholar
  21. 21.
    Abdolali, F., Zoroofi, R.A., Otake, Y., Sato, Y.: Automatic segmentation of maxillofacial cysts in cone beam CT images. Comput. Biol. Med. 72, 108–119 (2016).  https://doi.org/10.1016/j.compbiomed.2016.03.014CrossRefGoogle Scholar
  22. 22.
    Markiewicz, T., Dziekiewicz, M., Osowski, S., Maruszynski, M., Kozlowski, W., Boguslawska-Walecka, R.: Thresholding techniques for segmentation of atherosclerotic plaque and lumen areas in vascular arteries. Bull. Polish Acad. Sci. Tech. Sci. 63, 269–280 (2015).  https://doi.org/10.1515/bpasts-2015-0031CrossRefGoogle Scholar
  23. 23.
    Ciszkiewicz, A., Lorkowski, J., Milewski, G.: A novel planning solution for semi-autonomous aspiration of Baker’s cysts. Int. J. Med. Robot. Comput. Assist. Surg. 14, e1882 (2018).  https://doi.org/10.1002/rcs.1882CrossRefGoogle Scholar
  24. 24.
    Mason, D.: SU-E-T-33: Pydicom: An Open Source DICOM Library. Med. Phys. 38, 3493 (2011).  https://doi.org/10.1118/1.3611983CrossRefGoogle Scholar
  25. 25.
    van der Walt, S., Colbert, S.C., Varoquaux, G.: The NumPy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13, 22–30 (2011).  https://doi.org/10.1109/MCSE.2011.37CrossRefGoogle Scholar
  26. 26.
    Toussaint, G.T.: Computing largest empty circles with location constraints. Int. J. Comput. Inf. Sci. 12, 347–358 (1983).  https://doi.org/10.1007/BF01008046MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Moustris, G.P., Hiridis, S.C., Deliparaschos, K.M., Konstantinidis, K.M.: Evolution of autonomous and semi-autonomous robotic surgical systems: a review of the literature. Int. J. Med. Robot. Comput. Assist. Surg. 7, 375–392 (2011).  https://doi.org/10.1002/rcs.408CrossRefGoogle Scholar
  28. 28.
    Herghelegiu, P.-C., Manta, V., Perin, R., Bruckner, S., Gröller, E.: Biopsy planner–visual analysis for needle pathway planning in deep seated brain tumor biopsy. In: Computer Graphics Forum, pp. 1085–1094. Wiley Online Library (2012)Google Scholar
  29. 29.
    Liang, K., Rogers, A.J., Light, E.D., von Allmen, D., Smith, S.W.: 3D ultrasound guidance of autonomous robotic breast biopsy: feasibility study. Ultrasound Med. Biol. 36, 173–177 (2010).  https://doi.org/10.1016/j.ultrasmedbio.2009.08.014CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Applied MechanicsCracow University of TechnologyCracowPoland

Personalised recommendations