Advertisement

Influence of Elevated Temperature During Crimping on Results of Numerical Simulation of a Bioresorbable Stent Deployment Process

  • Jakub Bukała
  • Krzysztof Damaziak
  • Jerzy Małachowski
  • Łukasz MazurkiewiczEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 831)

Abstract

Bioresorbable stents (BRSs) represent a promising technological development within the field of cardiovascular angioplasty because of their ability to avoid long-term side effects of conventional stents such as in-stent restenosis, late stent thrombosis and fatigue induced strut fracture. However polymer materials used for production of some of the BRSs pose new challenges raising from the fact, that mechanical properties of polymers are very different from the metallic materials used to make stents before BRSs era. These challenges manifests not only in clinical practice but mainly in the process of design of the new device. This especially applies to Finite Element based numerical simulations of the stent structure, as the first-choice tool to examine newly developed stent in early stage of design process. In the article authors investigating different scenarios of numerical simulation of stent deployment process. The goal of the exercise is to find a proper way to model influence of elevated temperature present during crimping on the behaviour of the stent.

Keywords

Bioresorbable stent Finite element analysis Biodegradable material mechanics 

Notes

Acknowledgements

The study was supported by the NCBiR within project “Apollo” (STRATEGMED) and the Interdisciplinary Centre for Mathematical and Computational Modelling (ICM) of the University of Warsaw under grant no. GB65-19. This support is gratefully acknowledged.

References

  1. 1.
    Barton, M., Grüntzig, J., Husmann, M., Rösch, J.: Balloon angioplasty – the legacy of andreas grüntzig, M.D. (1939–1985). Front. Cardiovasc. Med. 1, 15 (2014)Google Scholar
  2. 2.
    Garg, S., Patrick, W.: Serruys, coronary stents: current status. J. Am. College Cardiol. 56(10), 1–42 (2010)CrossRefGoogle Scholar
  3. 3.
    Moses, J.W., Leon, M.B., Popma, J.J., Fitzgerald, P.J., Holmes, D.R., O’Shaughnessy, C., Caputo, R.P., Kereiakes, D.J., Williams, D.O., Teirstein, P.S., Jaeger, J.L.: Sirolimus-eluting stents versus standard stents inpatients with stenosis in a native coronary artery. New Engl. J. Med. 349(14), 1315–1323 (2003)CrossRefGoogle Scholar
  4. 4.
    Stone, W.G., Ellis, G.S., Cox, A.D., Hermiller, J., O’Shaughnessy, C., Mann, T.J., Turco, M., Caputo, R., Bergin, P., Greenberg, J., Popma, J.J., Rusell, E.M.: A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N. Engl. J. Med. 350(3), 221–231 (2004)CrossRefGoogle Scholar
  5. 5.
    Waksman, R.: Promise and challenges of bioabsorbable stents. Cathet. Cardiovasc. Interv. 70, 407–414 (2007)CrossRefGoogle Scholar
  6. 6.
    Grech, E.D.: ABC of Interventional Cardiology, 2nd edn. Wiley-Blackwell, West Sussex (2011)Google Scholar
  7. 7.
    Erne, P., Schier, M., Resink, T.J.: The road to bioabsorbable stents: reaching clinical reality? Cardiovasc. Interv. Radiol. 29, 11–16 (2006)CrossRefGoogle Scholar
  8. 8.
    Onuma, Y., Serruys, W.P.: Bioresorbable scaffold the advent of a new era in percutaneous coronary and peripheral revascularization? New Drugs Technol. Circ. 123(7), 779–797 (2011)Google Scholar
  9. 9.
    Ielasi, A., Latib, A., Colombo, A.: Current and future drug-eluting coronary stent technology. Expert Rev. Cardiovas. Ther. 9, 485–503 (2011)CrossRefGoogle Scholar
  10. 10.
    Chua, S.D., MacDonald, B., Hashmi, M.: Finite element simulation of stent and balloon interaction. J. Mater. Process. Technol. 143, 591–597 (2003)CrossRefGoogle Scholar
  11. 11.
    Lally, C., Dolan, F., Prendergast, P.: Cardiovascular stent design and vessel stresses: a finite element analysis. J. Biomech. 38, 1574–1581 (2005)CrossRefGoogle Scholar
  12. 12.
    Bukala, J., Malachowski, J., Kwiatkowski, P.: Finite element analysis of the percutaneous coronary intervention in a coronary bifurcation. Acta Bioeng. Biomech. 16(4), 23–31 (2014)Google Scholar
  13. 13.
    Pauck, R.G., Reddy, B.D.: Computational analysis of the radial mechanical performance of PLLA coronary artery stents. Med. Eng. Phys. 37, 7–12 (2014)CrossRefGoogle Scholar
  14. 14.
    Debusschere, N., Segers, P., Dubruel, P., Verhegghe, B., DeBeule, M.: A finite element strategy to investigate the free expansion behavior of a biodegradable polymeric stent. J. Biomech. 48, 2012–2018 (2015)CrossRefGoogle Scholar
  15. 15.
    Ge, H., Yang, F., Hao, Y., Guangfeng, W., Zhang, H., Dong, L.: Thermal, mechanical, and rheological properties of plasticized poly(L-lactic acid). J. Appl. Polym. Sci. 127(4), 2832–2839 (2013)CrossRefGoogle Scholar
  16. 16.
    Bukala, J., Malachowski, J., Kwiatkowski, P.: Numerical analysis of stent expansion process in coronary artery stenosis with the use of non-compliant balloon. Biocybern. Biomed. Eng. 36(1), 145–156 (2016)CrossRefGoogle Scholar
  17. 17.
    Bukala, J., Kwiatkowski, P., Malachowski, J.: Numerical analysis of crimping and inflation process of balloon-expandable coronary stent using implicit solution. Int. J. Numer. Methods Biomed. Eng. 33(12), 1–11 (2017).  https://doi.org/10.1002/cnm.2890MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jakub Bukała
    • 1
  • Krzysztof Damaziak
    • 1
  • Jerzy Małachowski
    • 1
  • Łukasz Mazurkiewicz
    • 1
    Email author
  1. 1.Military University of TechnologyWarsawPoland

Personalised recommendations