Advertisement

Impedimetric Method to Monitor Biological Layer Formation on Central Venous Catheters for Hemodialysis Made of Carbothane

  • Ewa ParadowskaEmail author
  • Marta Nycz
  • Katarzyna Arkusz
  • Bartosz Kudliński
  • Elżbieta Krasicka-Cydzik
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 831)

Abstract

The aim of the study was to specify by an impedimetric method the changes observed on the inner wall of central venous catheters for hemodialysis leading to the formation of a biological film. To evaluate these changes a patient-dialyzer model was built in which experimental parameters were kept closely similar to the clinical conditions of hemodialysis. The impedance spectra and SEM/EDS analysis of the biological layer deposited on the inner surface of the distal part of the catheter gave an insight into the structure of film formation and its chemical composition. Since an early detection of biofilm formation inside the distal part of the catheter is crucial for the safety of medical treatment and it usually prompts the implementation of antibiotic therapy. Developed impedimetric method can minimize the risk of infection and ensure the continuity of treatment.

Keywords

Central venous catheters Electrochemical impedance spectroscopy Biological layer Scanning electron microscopy 

References

  1. 1.
    Chan, M.R.: Hemodialysis central venous catheter dysfunction. Semin. Dial. 21, 516–521 (2008).  https://doi.org/10.1111/j.1525-139X.2008.00495.xCrossRefGoogle Scholar
  2. 2.
    Saxena, A.K., Panhotra, B.R.: Haemodialysis catheter-related bloodstream infections: current treatment options and strategies for prevention. Swiss Med. Wkly. 127–138 (2005)Google Scholar
  3. 3.
    Venturini, E., Becuzzi, L., Magni, L.: Catheter-induced thrpmbosis of the superior vena cava. Vasc. Med. 1–4 (2012).  https://doi.org/10.1155/2012/469619CrossRefGoogle Scholar
  4. 4.
    O’Grady, N.P., Alexander, M., Burns, L.A., Dellinger, E.P., Garland, J., Heard, S.O.: Guidelines for the prevention of intravascular catheter-related infections. Clin. Infect. Dis. 52, 1087–1099 (2011).  https://doi.org/10.1093/cid/cir257CrossRefGoogle Scholar
  5. 5.
    Tsukashita, M., Anda, A., Balsam, L.: Type A aortic dissection: a rare complication of central venous catheter placement. J. Card. Surg. 29, 368–370 (2014)CrossRefGoogle Scholar
  6. 6.
    Deliberato, R.O., Marra, A.R., Correa, T.D., Martino, M.D.V., Correa, L., Pavao dos Santos, O.F., Edmond, M.B.: Catheter related bloodstream infection (CR-BSI) in ICU Patients: making the decision to remove or not to remove the central venous catheter. PLoS OnE 7, 3 (2012).  https://doi.org/10.1371/journal.pone.0032687CrossRefGoogle Scholar
  7. 7.
    Raad, I., Hanna, H., Maki, D.: Intravascular catheter-related infections: advances in diagnosis, prevention, and management. Lan. Infect. Dis. 7, 645–657 (2007)CrossRefGoogle Scholar
  8. 8.
    Vascular Access Work Group. Clinical practice guidelines for vascular access. Am. J. Kidney Dis. 176–273 (2006).  https://doi.org/10.1053/j.ajkd.2006.04.029
  9. 9.
    Menglin, T., Mei, F., Lijun, C., Jinmei, Z., Peng, K., Shuhua, L.: Closed blood conservation device for reducing catheter-related infections in children after cardiac surgery. Crit. Care Nurse 5, 53–61 (2014)Google Scholar
  10. 10.
    Horvath, R., Collignon, P.: Controlling intravascular catheter infections. Aust. Prescr. 26, 41–43 (2003)CrossRefGoogle Scholar
  11. 11.
    Elliott, T.S.J.: The pathogensis and prevention of intervascular catheter infections Central Venous Catheters. Lancet Infect. Dis. 206-215 (2009)Google Scholar
  12. 12.
    Cornelis van Rooden, J., Schippers, E.F., Rosendaal, F.R., Meinders, A.E., Huisman, M.V.: Infectious complications of central venous catheters increase the risk of catheter-related thrombosis in hematology patients: a prospective study. J. Clin. Oncol. 23, 2655–2660 (2005).  https://doi.org/10.1200/JCO.2005.05.002CrossRefGoogle Scholar
  13. 13.
    Davenport, A., Ahmand, J.: Medical management of hepatorenal syndrome. Nephrol. Dial. Transplant. 1, 34–41 (2012).  https://doi.org/10.1093/ndt/gfr736CrossRefGoogle Scholar
  14. 14.
    Gahlot, R., Nigam, C., Kumar, V., Yadav, G., Anupurba, S.: Symposium: current concepts in critical care. Int. J. Crit. Illn. Inj. Sci. 4, 162–167 (2014).  https://doi.org/10.4103/2229-5151.134184CrossRefGoogle Scholar
  15. 15.
    Maczynska, B., Przondo-Mordarska, A.: Bloodstream infections related to venous access. Zakazenia, p. 4 (2011)Google Scholar
  16. 16.
    Mozaffari, K., Bakhshandeh, H., Khalaj, H., Soudi H.: Incidence of catheter-related infections in hospitalized cardiovascular patients. Res. Cardiovasc. Med. 2, 99–103 (2013).  https://doi.org/10.5812/cardiovascmed.9388CrossRefGoogle Scholar
  17. 17.
    Kutner, D.J.: Thrombotic complications of centra venous catheters in cancer patients. Oncologist 9, 207–216 (2004)CrossRefGoogle Scholar
  18. 18.
    Krishnasami, Z., Ton, D.C., Bimbo, L., Taylor, M.E., Balkovetz, D.F., Barker, J., Allon, M.: Management of hemodialysis catheter-related bacteremia with an adjunctive antibiotic lock solution. Kidney Int. 61, 1136–1142 (2002).  https://doi.org/10.1046/j.1523-1755.2002.00201.xCrossRefGoogle Scholar
  19. 19.
    Paredes, J., Alonso-Arce, M., Sedano, B., Legarda, J., Arizti, F., Gómez, E., Aguinaga, A., Del Pozo, J.L., Arana, S.: Smart central venous port for early detection of bacterial biofilm related infections. Biomed. Microdevices 16, 365–374 (2014).  https://doi.org/10.1007/s10544-014-9839-3CrossRefGoogle Scholar
  20. 20.
    Kingdon, E.J., et al.: Atrial thrombus and central venous dialysis catheters. Am. J. Kidney Dis. 38, 631–639 (2001)CrossRefGoogle Scholar
  21. 21.
    Dua, R., James, K.N., Trerotola, S.: Significance of echocardiographically detected tip thrombus associated with central venous catheters. J. Vasc. Interv. Radiol. 313 (2013).  https://doi.org/10.1016/j.jvir.2013.01.338CrossRefGoogle Scholar
  22. 22.
    Paredes, J., Becerro, S., Arizti, F., Aguinaga, A., Del Pozo, J.L., Arana, S.: Real time monitoring of the impedance characteristics of Staphylococcal bacterial biofilm cultures with a modified CDC reactor system. Biosens. Bioelectron. 38, 226–232 (2012)CrossRefGoogle Scholar
  23. 23.
    Paredes, J., Becerro, S., Arizti, F., Aguinaga, A., Del Pozo, J.L., Arana, S.: Interdigitated microelectrode biosensor for bacterial biofilm growth monitoring by impedance spectroscopy technique in 96-well microtiter plates. Sensor Actuator 178, 663–670 (2013).  https://doi.org/10.1016/j.snb.2013.01.027CrossRefGoogle Scholar
  24. 24.
    Ben-Yoav, H., Freeman, A., Sternheim, M., Shacham-Diamand, Y.: An electrochemical impedance model for integrated bacterial biofilms. Electrochim. Acta 56, 7780–7786 (2011).  https://doi.org/10.1016/j.electacta.2010.12.025CrossRefGoogle Scholar
  25. 25.
    Taeyoung, K., Junil, K., Lee, J.H., Jeyong, Y.: Influence of attached bacteria and biofilm on double-layer capacitance during biofilm monitoring by electrochemicalimpedance spectroscopy. Wat. Res. 45, 4615–4622 (2011).  https://doi.org/10.1016/j.watres.2011.06.010CrossRefGoogle Scholar
  26. 26.
    Wei, H., Ding, D., Wei, S., Guo, Z.: Anticorrosive conductive polyurethane multiwalled carbon nanotube nanocomposites. J. Mater. Chem. 45, 10805–10813 (2013)CrossRefGoogle Scholar
  27. 27.
    Ookubo, A., Nishida, M., Ooi, K., Ishida, K., Hashimura, Y., Ikawa, A., Yoshimura, Y., Kawada, J.: Mechanism of phosphate adsorption to a three-dimensional structure of boehmite in the presence of bovine serum albumin. J. Pharm. Sci. 82, 744–749 (1993)CrossRefGoogle Scholar
  28. 28.
    Wang, X., Herting, G., Wallindera, I., Blomberg, E.: Adsorption of bovine serum albumin on silver surfaces enhances the release of silver at pH neutral conditions. Phys. Chem. 17, 18524–18534 (2015).  https://doi.org/10.1039/c5cp02306hCrossRefGoogle Scholar
  29. 29.
    Moradi, M., Yeganeh, H., Pazokifard, S.: Synthesis and assessment of novel anticorrosive polyurethane coatings containing an amine-functionalized nanoclay additive prepared by the cathodic electrophoretic deposition method. RSC Adv. 6, 28089–28102 (2016).  https://doi.org/10.1039/C5RA26609BCrossRefGoogle Scholar
  30. 30.
    Mohsen, Q., SFadl-allah, S.A., El-Shenawy, N.S.: Electrochemical impedance spectroscopy study of the adsorption behavior of bovine serum albumin at biomimetic calcium - phosphate coating. Int. J. Electrochem. Sc. 7, 4510–4527 (2012)Google Scholar
  31. 31.
    Vlasova, I., Saletsky, A.: Study of the denaturation of human serum albumin by sodium dodecyl sulfate using the intrinsic fluorescence of albumin. J. App. Spectrosc. 76, 536–541 (2009)CrossRefGoogle Scholar
  32. 32.
    Hanamura, K., Tojo, A., Kinugasa, S.: The resistive index is a marker of renal function, pathology, prognosis, and responsiveness to steroid therapy in chronic kidney disease patients. Int. J. Nephrol. 1-9 (2012).  https://doi.org/10.1155/2012/139565CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ewa Paradowska
    • 1
    Email author
  • Marta Nycz
    • 1
  • Katarzyna Arkusz
    • 1
  • Bartosz Kudliński
    • 2
  • Elżbieta Krasicka-Cydzik
    • 1
  1. 1.Biomedical Engineering DivisionUniversity of Zielona GoraZielona GoraPoland
  2. 2.Department of Intensive CareZielona Gora University HospitalZielona GoraPoland

Personalised recommendations