Modeling of Pulse Wave Propagation and Reflection Along Human Aorta

  • Natalya Kizilova
  • Helen Solovyova
  • Jeremi Mizerski
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 831)


Pulse wave propagation, reflection and transmission along human aorta is studied on the 92-tube cadaveric model from aortic root to bifurcation. The branching coefficients, optimal coefficients by Murray, wave reflection coefficients by J. Lighthill have been computed and compared to the result computed on the 19-tube model of aorta derived from the 55-tube model of hyman systemic arterial tree by Westerhof. Variations in the local wave speed along the aorta have been computed on the model and compared to the continuous measurement data. It is shown the aorta is an optimal waveguide ensuring almost zero local wave reflections at the branches except for the aortic bifurcation, subclavian, carotid and kidney arteries. It is first shown that most of the branches have a negative wave reflection, which promotes blood acceleration and reduces the post-load on the heart due to the suction effect. The calculated values of the branching coefficients and pulse wave velocities correspond to the experimental measurements. The wave reflections at the kidney arteries depend on their individual geometry. The proposed approach can be used for preliminary estimation of the hemodynamic parameters caused by the wave propagation along individual aorta using the MRI study, and prediction of the risk of development of the cardiovascular diseases provided by abnormal hemodynamic.


Pulse wave Wave conductivity Wave reflection Medical diagnostics 


  1. 1.
    Nichols, W., O’Rourke, M.: McDonald’s Blood Flow in Arteries. Theoretical, Experimental and Clinical Principles. Hodder Arnold – Oxford University Press, New York (2005)Google Scholar
  2. 2.
    Grotenhuis, H.B., Westenberg, J.J.M., Steendijk, P., et al.: Validation and reproducibility of aortic pulse wave velocity as assessed with velocity-encoded MRI. J. Magn. Res. Imag. 30(3), 521–526 (2009)CrossRefGoogle Scholar
  3. 3.
    Latham, R.D., Westerhof, N., Sipkema, P., et al.: Regional wave travel and reflections along the human aorta: a study with six simultaneous micromanometric pressures. Circulation 72(6), 1257–1269 (1985)CrossRefGoogle Scholar
  4. 4.
    Rogers, W.J., Hu, Y.-L., Coast, D., et al.: Age-associated changes in regional aortic pulse wave velocity. J. Am. Coll. Cardiol. 38(4), 1123–1129 (2001)CrossRefGoogle Scholar
  5. 5.
    O’Rourke, M.F., Blazek, J.V., Morreels, C., Krovetz, L.J.: Pressure wave transmission along the human aorta. Circul. Res. 23(10), 567–579 (1968)CrossRefGoogle Scholar
  6. 6.
    Cruickshank, K., Riste, L., Anderson, S.G., et al.: Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance. Circulation 106(4), 2085–2090 (2002)CrossRefGoogle Scholar
  7. 7.
    Kizilova, N.: Novel aspects and perspectives of the theory of pulse waves in arteries. In: Chernyĭ, G.G., Regirer, S.A. (eds.) Contemporary Problems of Biomechanics, vol. 11, pp. 44–63. Moscow University Press, Moscow (2006)Google Scholar
  8. 8.
    Caro, C.G., Fitz-Gerald, J.M., Schroter, R.C.: Atheroma and arterial wall shear: observations, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc. Roy. Soc. Lond. Ser. B 177(1), 109–159 (1971)CrossRefGoogle Scholar
  9. 9.
    Westerhof, N., Sipkema, P., Bos, C.G.V., Elzinga, G.: Forward and backward waves in the arterial system. Cardiovasc. Res. 6(4), 648–656 (1972)CrossRefGoogle Scholar
  10. 10.
    Parker, K.H., Jones, J.H.: Forward and backward running waves in arteries: analysis using the method of characteristics. ASME J. Mech. Eng. 112(2), 322–326 (1990)Google Scholar
  11. 11.
    Sun, Y.-H., Anderson, T.J., Parker, K.H., Tyberg, J.V.: Wave-intensity analysis: a new approach to coronary hemodynamics. J. Appl. Physiol. 89(10), 1636–1644 (2000)CrossRefGoogle Scholar
  12. 12.
    Li, Y., Parker, K.H., Khir, A.W.: Using wave intensity analysis to determine local reflection coefficient in flexible tubes. J. Biomech. 49(6), 2709–2717 (2016)CrossRefGoogle Scholar
  13. 13.
    Kizilova, N.: Pulse wave reflections in branching arterial networks and pulse diagnosis methods. J. Chin. Inst. Eng. 26(6), 869–880 (2003)CrossRefGoogle Scholar
  14. 14.
    Kizilova, N.: Blood flow in arteries: regular and chaotic dynamics. In:Dynamical systems. Applications. Awrejcewicz, J., Kazmierczak, M., Olejnik, P., Mrozowski, K. (eds). Lodz Politechnical University Press, Poland. 69–80 (2013)Google Scholar
  15. 15.
    Lighthill, M.J.: Waves in Fluids. Cambridge University Press, Cambridge (1978)zbMATHGoogle Scholar
  16. 16.
    Westerhof, N., Bosman, F., de Vries, C.J., Noordegraaf, A.: Analog studies of the human systemic arterial tree. J. Biomech. 2(1), 121–143 (1969)CrossRefGoogle Scholar
  17. 17.
    Zenin, O., Gusak, V., Kirjakulov, G.: Human Arterial System in Numbers and Formulas. Donbass Pub., Ukraine (2002)Google Scholar
  18. 18.
    Alastruey, J., Khir, A.W., Matthys, K.S., et al.: Pulse wave propagation in a model of human arterial network: assessment of 1-D viscoelastic simulations against in vitro measurements. J. Biomech. 44(5), 2250–2258 (2011)CrossRefGoogle Scholar
  19. 19.
    Kizilova, N., Philippova, H., Zenin, O.: A realistic model of human arterial system: blood flow distribution, pulse wave propagation and modeling of pathology. In: Korzynski, M., Cwanka, J. (eds.) Mechanics in Medicine, vol. 10, pp. 103–118. Rzeszow University Press, Rzeszow (2010)Google Scholar
  20. 20.
    Folkov, B., Nil, E.: Circulation. London University Press, London (1971)Google Scholar
  21. 21.
    Li, Y., Parker, K.H., Khir, A.W.: Using wave intensity analysis to determine local reflection coefficient in flexible tubes. J. Biomech. 49(5), 2709–2717 (2016)CrossRefGoogle Scholar
  22. 22.
    Zamir, M., Bigelov, D.C.: Cost of depature from optimality in arterial branching. J. Theor. Biol. 109(3), 401–409 (1984)CrossRefGoogle Scholar
  23. 23.
    Milnor, W.R.: Hemodynamics. Williams & Wilkins, Baltimore (1989)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Natalya Kizilova
    • 1
  • Helen Solovyova
    • 2
  • Jeremi Mizerski
    • 3
  1. 1.Warsaw University of TechnologyWarsawPoland
  2. 2.Kharkov National Polytechnic UniversityKharkivUkraine
  3. 3.Szpital Wojewódzki w ZamościuZamoscPoland

Personalised recommendations