Advertisement

Human Red Blood Cell Properties and Sedimentation Rate: A Biomechanical Study

  • Natalya KizilovaEmail author
  • Liliya Batyuk
  • Vitalina Baranets
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 831)

Abstract

Human blood is widely used for clinical diagnostics due to its easy accessibility and high sensitivity for any metabolic disorders and diseases. In the paper different mechanical and electric properties of red blood cells (RBC) useful for diagnostics are discussed. The experimental data on the erythrocyte sedimentation rate (ESR) test in its standard procedure and continuous computer assisted assessment are presented. The review of mathematical approaches for reasonable ESR estimation is given. The continuous model of blood as three phase suspension is used for numerical estimation of aggregate ability of RBC. The problem on RBC aggregation and sedimentation in a thin vertical tube is considered. A numerical solution of the formulated hyperbolic problem is obtained by the method of characteristics. Numerical computations have been carried out for a wide range of RBC parameters proper to healthy state and patients with cancer, drug and food allergy. It is shown the continuous sedimentation curves give more diagnostic information than the standard ESR value. Based on the experimental and theoretical study, a biomechanical interpretation of the ESR curves is proposed.

Keywords

Biomechanics Erythrocyte sedimentation rate Medical diagnostics 

References

  1. 1.
    Fung, Y.C.: Biomechanics. Circulation. Springer, New York (1997).  https://doi.org/10.1007/978-1-4757-2696-1CrossRefGoogle Scholar
  2. 2.
    Baskurt, O.K., Hardeman, M.R., Rampling, M.W.: Handbook of Hemorheology and Hemodynamics. IOS Press, Amsterdam (2007)Google Scholar
  3. 3.
    Olshaker, J.S., Jerrard, D.A.: The erythrocyte sedimentation rate. J. Emergency Med. 15(6), 869–874 (1997)CrossRefGoogle Scholar
  4. 4.
    Calderon, A.J., Wener, M.H.: Erythrocyte sedimentation rate and C-reactive protein. Hosp. Med. Clin. 193, 313–337 (2012)CrossRefGoogle Scholar
  5. 5.
    Litao, M.K., Kamat, D.: Erythrocyte sedimentation rate and C-reactive protein: how best to use them in clinical practice. Pediatr. Ann. 43(10), 417–420 (2014)CrossRefGoogle Scholar
  6. 6.
    Kainth, M.K., Gigliotti, F.: Simultaneous testing of erythrocyte sedimentation rate and C-reactive protein: increased expenditure without demonstrable benefit. J. Pediatr. 165(3), 625–627 (2014)CrossRefGoogle Scholar
  7. 7.
    Grzybowski, A., Sak, J.: Edmund Biernacki (1866–1911): discoverer of the erythrocyte sedimentation rate. On the 100th anniversary of his death. Clin. Dermatol. 29(6), 697–703 (2011)CrossRefGoogle Scholar
  8. 8.
    Daniels, L.M., Tosh, P.K., Fiala, J.A., et al.: Extremely elevated erythrocyte sedimentation rates: associations with patients’ diagnoses, demographic characteristics, and comorbidities. Mayo Clinic Proc. 92(11), 1636–1643 (2017)CrossRefGoogle Scholar
  9. 9.
    Cengiz, O.K., Esmen, S.E., Varli, M., et al.: Markedly elevated erythrocyte sedimentation rate in older adults. How significant clinically? Eur. Geriatr. Med. 4(1), 28–31 (2013)CrossRefGoogle Scholar
  10. 10.
    Shteinshnaider, M., Almoznino-Sarafian, D., Tzur, I., et al.: Shortened erythrocyte sedimentation rate evaluation is applicable to hospitalised patients. Europ. J. Internal Med. 21(3), 226–229 (2010)CrossRefGoogle Scholar
  11. 11.
    Karlsson, H., Ahlborg, B., Dalman, Ch., Hemmingsson, T.: Association between erythrocyte sedimentation rate and IQ in Swedish males aged 18–20. Brain Behav. Immun. 24(6), 868–873 (2010)CrossRefGoogle Scholar
  12. 12.
    van den Broek, N.R., Letsky, E.A: Pregnancy and the erythrocyte sedimentation rate. Br. J. Obstet. Gynaecol. 108(11), 1164–1167 (2001)Google Scholar
  13. 13.
    Choi, J.W., Pai, S.H.: Influences of hypercholesterolemia on red cell indices and erythrocyte sedimentation rate in elderly persons. Clin. Chim. Acta 341(1–2), 117–121 (2004)CrossRefGoogle Scholar
  14. 14.
    Ingelsson, E., Årnlöv, J., Sundström, J., Lind, L.: Inflammation, as measured by the erythrocyte sedimentation rate, is an independent predictor for the development of heart failure. J. Amer. Coll. Cardiol. 45(11), 1802–1806 (2005)CrossRefGoogle Scholar
  15. 15.
    Rabjohn, L., Roberts, K., Troiano, M., Schoenhaus, H.: Diagnostic and prognostic value of erythrocyte sedimentation rate in contiguous osteomyelitis of the foot and ankle. J. Foot Ankle Surg. 46(4), 230–237 (2007)CrossRefGoogle Scholar
  16. 16.
    Glaser, R.: Biophysics: An Introduction. Springer, Berlin (2012)Google Scholar
  17. 17.
    Alison, J., Sheppard, R.: Dielectric properties of human blood at microwave frequencies. Phys. Med. Biol. 38, 971–978 (1993)CrossRefGoogle Scholar
  18. 18.
    Jaspard, F., Nadi, M., Rouane, A.: Dielectric properties of blood: an investigation of haematocrit dependence. Physiol. Meas. 24, 137–147 (2003)CrossRefGoogle Scholar
  19. 19.
    Lisin, R., Ginzburg, B.Z., Schlesinger, M., Feldman, Y.: Time domain dielectric spectroscopy study of human cells: I. Erythrocytes and ghosts. Biochim. Biophys. Acta 1280(1), 34–40 (1996)CrossRefGoogle Scholar
  20. 20.
    Batyuk, L.: Influence of cancer disease on dielectric characteristics of structural-functional state of erythrocyte membranes. ScienceRise Med. Sci. 7(12), 11–17 (2015)Google Scholar
  21. 21.
    Bertoluzzo, S.M., Bollini, A., Rasia, M., Raynal, A.: Kinetic model for erythrocyte aggregation. Blood Cells Mol. Dis. 25(2), 339–349 (1999)CrossRefGoogle Scholar
  22. 22.
    Bell, G.I.: Models for the specific adhesion of cells to cells. Science 200(1088), 618–627 (1978)CrossRefGoogle Scholar
  23. 23.
    Chesnutt, J.K.W., Marshall, J.S.: Blood cell transport and aggregation using discrete ellipsoidal particles. Comput. Fluids 38(6), 1782–1794 (2009)CrossRefGoogle Scholar
  24. 24.
    Kizilova, N., Cherevko, V.: Mathematical modeling of particle aggregation and sedimentation in concentrated suspensions. In: Korzynski, M., Czwanka, J. (eds.) Mechanika w Medycynie, vol. 12, pp. 43–52. Rzeszow Univ. Press (2014)Google Scholar
  25. 25.
    Provata, A., Trohidou, K.N.: Spatial distribution and fractal properties of aggregating magnetic and non-magnetic particles. Fractals 6(2), 219–230 (1998)CrossRefGoogle Scholar
  26. 26.
    Neu, B., Miesleman, H.J.: Depletion-mediated red blood cell aggregation in polymer solutions. Biophys. J. 83(5), 2482–2490 (2002)CrossRefGoogle Scholar
  27. 27.
    Regirer, S.A.: On continual models of suspensions. Appl. Math. Mech. 42(4), 679–688 (1978)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Regirer, S.A., Shadrina, N.H.: On models of tixotropic liquids. Appl. Math. Mech. 42(5), 856–865 (1978)MathSciNetGoogle Scholar
  29. 29.
    Regirer, S.A.: Lectures on Biological Mechanics. Moscow University Press, Moscow (1980)Google Scholar
  30. 30.
    Kizilova, N.: Aggregation in magnetic field. In: Contemporary Problems of Biomechanics, vol. 9, pp. 118–135. Moscow University Press, Moscow (1994)Google Scholar
  31. 31.
    Chesnutt, J.K.W., Marshall, J.S.: Blood cell transport and aggregation using discrete ellipsoidal particles. Comput. Fluids 38(5), 1782–1794 (2009)CrossRefGoogle Scholar
  32. 32.
    Pribush, A., Meyerstein, D., Meyerstein, N.: The mechanism of erythrocyte sedimentation. Part 2: The global collapse of settling erythrocyte network. Colloids Surf. B Biointerfaces 75(1), 224–229 (2010)CrossRefGoogle Scholar
  33. 33.
    Batyuk, L., Kizilova, N.: Thermodynamic approach to dielectric parameters of human blood: application to early medical diagnostics of tumors. In: 14th Joint European Thermodynamics Conference, Book of Abstracts, Budapest (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Natalya Kizilova
    • 1
    Email author
  • Liliya Batyuk
    • 2
  • Vitalina Baranets
    • 3
  1. 1.Warsaw University of TechnologyWarsawPoland
  2. 2.Kharkov National Medical UniversityKharkivUkraine
  3. 3.Kharkov National UniversityKharkivUkraine

Personalised recommendations