Advertisement

Congenital Anomalies of the Kidney and Urinary Tract in Adolescents

  • Erica Winnicki
  • Hillary Copp
Chapter

Abstract

Congenital anomalies of the kidney and urinary tract are a heterogeneous group of disorders which represent the most common cause of chronic kidney disease in children and adolescents. Children are most often diagnosed in the antenatal and neonatal period given the widespread use of antenatal ultrasound; however, late diagnoses do occur and clinicians should recognize potential presenting signs and symptoms. Care of children with chronic kidney disease due to congenital anomalies of the kidney and urinary tract should be undertaken by a multidisciplinary team that includes both a pediatric urologist and pediatric nephrologist. Treatment involves surgical interventions and management of bladder dysfunction in some cases, as well as medical management of the complications of chronic kidney disease. Particular attention should be paid to the adolescent with chronic kidney disease due to congenital anomalies of the kidney and urinary tract as puberty is a time of more rapid kidney disease progression. For those children who do progress to end-stage renal disease, outcomes with renal transplantation are superior in this group of patients as compared to other causes of renal disease.

Keywords

CAKUT PUV Chronic kidney disease 

References

  1. 1.
    Barakat AJ, Drougas JG. Occurrence of congenital abnormalities of kidney and urinary tract in 13,775 autopsies. Urology. 1991;38(4):347–50.CrossRefGoogle Scholar
  2. 2.
    European Surveillance of Congenital Anomalies. Prevalence tables 2011–2015. Ispra: EUROCAT; 2013.Google Scholar
  3. 3.
    Bulum B, Ozcakar ZB, Ustuner E, Dusunceli E, Kavaz A, Duman D, et al. High frequency of kidney and urinary tract anomalies in asymptomatic first-degree relatives of patients with CAKUT. Pediatr Nephrol. 2013;28(11):2143–7.CrossRefGoogle Scholar
  4. 4.
    Dart AB, Ruth CA, Sellers EA, Au W, Dean HJ. Maternal diabetes mellitus and congenital anomalies of the kidney and urinary tract (CAKUT) in the child. Am J Kidney Dis. 2015;65(5):684–91.CrossRefGoogle Scholar
  5. 5.
    Shnorhavorian M, Bittner R, Wright JL, Schwartz SM. Maternal risk factors for congenital urinary anomalies: results of a population-based case-control study. Urology. 2011;78(5):1156–61.CrossRefGoogle Scholar
  6. 6.
    Schreuder MF, Bueters RR, Huigen MC, Russel FG, Masereeuw R, van den Heuvel LP. Effect of drugs on renal development. Clin J Am Soc Nephrol. 2011;6(1):212–7.CrossRefGoogle Scholar
  7. 7.
    Sekine T, Miura K, Takahashi K, Igarashi T. Children’s toxicology from bench to bed – drug-induced renal injury (1): the toxic effects of ARB/ACEI on fetal kidney development. J Toxicol Sci. 2009;34(Suppl 2):SP245–50.PubMedGoogle Scholar
  8. 8.
    US Renal Data System, USRDS. Annual data report: atlas of chronic kidney disease and end-stage renal disease in the United States. Bethesda: National Institute of Health, National Institute of Diabetes and Digestive and Kidney DIseases; 2015.Google Scholar
  9. 9.
    Harambat J, van Stralen KJ, Kim JJ, Tizard EJ. Epidemiology of chronic kidney disease in children. Pediatr Nephrol. 2012;27(3):363–73.CrossRefGoogle Scholar
  10. 10.
    Chung EM, Soderlund KA, Fagen KE. Imaging of the pediatric urinary system. Radiol Clin N Am. 2017;55(2):337–57.CrossRefGoogle Scholar
  11. 11.
    Nguyen HT, Benson CB, Bromley B, Campbell JB, Chow J, Coleman B, et al. Multidisciplinary consensus on the classification of prenatal and postnatal urinary tract dilation (UTD classification system). J Pediatr Urol. 2014;10(6):982–98.CrossRefGoogle Scholar
  12. 12.
    Agrawalla S, Pearce R, Goodman TR. How to perform the perfect voiding cystourethrogram. Pediatr Radiol. 2004;34(2):114–9.CrossRefGoogle Scholar
  13. 13.
    Othman S, Al-Hawas A, Al-Maqtari R. Renal cortical imaging in children: 99mTc MAG3 versus 99mTc DMSA. Clin Nucl Med. 2012;37(4):351–5.CrossRefGoogle Scholar
  14. 14.
    Bauer SB, Nijman RJ, Drzewiecki BA, Sillen U, Hoebeke P, International Children’s Continence Society Standardization Subcommittee. International Children’s Continence Society standardization report on urodynamic studies of the lower urinary tract in children. Neurourol Urodyn. 2015;34(7):640–7.CrossRefGoogle Scholar
  15. 15.
    Soliman NA, Ali RI, Ghobrial EE, Habib EI, Ziada AM. Pattern of clinical presentation of congenital anomalies of the kidney and urinary tract among infants and children. Nephrology (Carlton). 2015;20(6):413–8.CrossRefGoogle Scholar
  16. 16.
    Kibar Y, Ashley RA, Roth CC, Frimberger D, Kropp BP. Timing of posterior urethral valve diagnosis and its impact on clinical outcome. J Pediatr Urol. 2011;7(5):538–42.CrossRefGoogle Scholar
  17. 17.
    Ziylan O, Oktar T, Ander H, Korgali E, Rodoplu H, Kocak T. The impact of late presentation of posterior urethral valves on bladder and renal function. J Urol. 2006;175(5):1894–7. discussion 1897CrossRefGoogle Scholar
  18. 18.
    Stoll C, Dott B, Alembik Y, Roth MP. Associated nonurinary congenital anomalies among infants with congenital anomalies of kidney and urinary tract (CAKUT). Eur J Med Genet. 2014;57(7):322–8.CrossRefGoogle Scholar
  19. 19.
    dos Santos Junior AC, de Miranda DM, Simoes e Silva AC. Congenital anomalies of the kidney and urinary tract: an embryogenetic review. Birth Defects Res C Embryo Today. 2014;102(4):374–81.CrossRefGoogle Scholar
  20. 20.
    Vivante A, Kohl S, Hwang DY, Dworschak GC, Hildebrandt F. Single-gene causes of congenital anomalies of the kidney and urinary tract (CAKUT) in humans. Pediatr Nephrol. 2014;29(4):695–704.CrossRefGoogle Scholar
  21. 21.
    Weber S, Moriniere V, Knuppel T, Charbit M, Dusek J, Ghiggeri GM, et al. Prevalence of mutations in renal developmental genes in children with renal hypodysplasia: results of the ESCAPE study. J Am Soc Nephrol. 2006;17(10):2864–70.CrossRefGoogle Scholar
  22. 22.
    Bower M, Salomon R, Allanson J, Antignac C, Benedicenti F, Benetti E, et al. Update of PAX2 mutations in renal coloboma syndrome and establishment of a locus-specific database. Hum Mutat. 2012;33(3):457–66.CrossRefGoogle Scholar
  23. 23.
    Verhave JC, Bech AP, Wetzels JF, Nijenhuis T. Hepatocyte nuclear factor 1beta-associated kidney disease: more than renal cysts and diabetes. J Am Soc Nephrol. 2016;27(2):345–53.CrossRefGoogle Scholar
  24. 24.
    Nef S, Neuhaus TJ, Sparta G, Weitz M, Buder K, Wisser J, et al. Outcome after prenatal diagnosis of congenital anomalies of the kidney and urinary tract. Eur J Pediatr. 2016;175(5):667–76.CrossRefGoogle Scholar
  25. 25.
    Woodhouse CR, Neild GH, Yu RN, Bauer S. Adult care of children from pediatric urology. J Urol. 2012;187(4):1164–71.CrossRefGoogle Scholar
  26. 26.
    DeFoor W, Clark C, Jackson E, Reddy P, Minevich E, Sheldon C. Risk factors for end stage renal disease in children with posterior urethral valves. J Urol. 2008;180(4 Suppl):1705–8. discussion 1708CrossRefGoogle Scholar
  27. 27.
    De Gennaro M, Capitanucci ML, Mosiello G, Caione P, Silveri M. The changing urodynamic pattern from infancy to adolescence in boys with posterior urethral valves. BJU Int. 2000;85(9):1104–8.CrossRefGoogle Scholar
  28. 28.
    Wyndaele JJ. Complications of intermittent catheterization: their prevention and treatment. Spinal Cord. 2002;40(10):536–41.CrossRefGoogle Scholar
  29. 29.
    Farrugia MK, Malone PS. Educational article: the Mitrofanoff procedure. J Pediatr Urol. 2010;6(4):330–7.CrossRefGoogle Scholar
  30. 30.
    Kari J, Al-Deek B, Elkhatib L, Salahudeen S, Mukhtar N, Al Ahmad R, et al. Is mitrofanoff a more socially accepted clean intermittent catheterization (CIC) route for children and their families? Eur J Pediatr Surg. 2013;23(5):405–10.PubMedGoogle Scholar
  31. 31.
    Gonzalez Celedon C, Bitsori M, Tullus K. Progression of chronic renal failure in children with dysplastic kidneys. Pediatr Nephrol. 2007;22(7):1014–20.CrossRefGoogle Scholar
  32. 32.
    Pereira PL, Urrutia MJ, Lobato R, Jaureguizar E. Renal transplantation in augmented bladders. Curr Urol Rep 2014;15(8):431.  https://doi.org/10.1007/s11934-014-0431-4.
  33. 33.
    Husmann DA. Long-term complications following bladder augmentations in patients with spina bifida: bladder calculi, perforation of the augmented bladder and upper tract deterioration. Transl Androl Urol. 2016;5(1):3–11.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Franco I. New ideas in the cause of bladder dysfunction in children. Curr Opin Urol. 2011;21(4):334–8.CrossRefGoogle Scholar
  35. 35.
    Chung KL, Chao NS, Liu CS, Tang PM, Liu KK, Leung MW. Abnormal voiding parameters in children with severe idiopathic constipation. Pediatr Surg Int. 2014;30(7):747–9.CrossRefGoogle Scholar
  36. 36.
    Islek A, Guven AG, Koyun M, Akman S, Alimoglu E. Probability of urinary tract infection in infants with ureteropelvic junction obstruction: is antibacterial prophylaxis really needed? Pediatr Nephrol. 2011;26(10):1837–41.CrossRefGoogle Scholar
  37. 37.
    Roth CC, Hubanks JM, Bright BC, Heinlen JE, Donovan BO, Kropp BP, et al. Occurrence of urinary tract infection in children with significant upper urinary tract obstruction. Urology. 2009;73(1):74–8.CrossRefGoogle Scholar
  38. 38.
    Herz D, Merguerian P, McQuiston L. Continuous antibiotic prophylaxis reduces the risk of febrile UTI in children with asymptomatic antenatal hydronephrosis with either ureteral dilation, high-grade vesicoureteral reflux, or ureterovesical junction obstruction. J Pediatr Urol. 2014;10(4):650–4.CrossRefGoogle Scholar
  39. 39.
    Fathallah-Shaykh SA, Flynn JT, Pierce CB, Abraham AG, Blydt-Hansen TD, Massengill SF, et al. Progression of pediatric CKD of nonglomerular origin in the CKiD cohort. Clin J Am Soc Nephrol. 2015;10(4):571–7.CrossRefGoogle Scholar
  40. 40.
    Jafar TH, Schmid CH, Landa M, Giatras I, Toto R, Remuzzi G, et al. Angiotensin-converting enzyme inhibitors and progression of nondiabetic renal disease. A meta-analysis of patient-level data. Ann Intern Med. 2001;135(2):73–87.CrossRefGoogle Scholar
  41. 41.
    Jafar TH, Stark PC, Schmid CH, Landa M, Maschio G, Marcantoni C, et al. Proteinuria as a modifiable risk factor for the progression of non-diabetic renal disease. Kidney Int. 2001;60(3):1131–40.CrossRefGoogle Scholar
  42. 42.
    ESCAPE Trial Group, Wuhl E, Trivelli A, Picca S, Litwin M, Peco-Antic A, et al. Strict blood-pressure control and progression of renal failure in children. N Engl J Med. 2009;361(17):1639–50.CrossRefGoogle Scholar
  43. 43.
    Warady BA, Abraham AG, Schwartz GJ, Wong CS, Munoz A, Betoko A, et al. Predictors of rapid progression of glomerular and nonglomerular kidney disease in children and adolescents: the Chronic Kidney Disease in Children (CKiD) cohort. Am J Kidney Dis. 2015;65(6):878–88.CrossRefGoogle Scholar
  44. 44.
    Sanna-Cherchi S, Ravani P, Corbani V, Parodi S, Haupt R, Piaggio G, et al. Renal outcome in patients with congenital anomalies of the kidney and urinary tract. Kidney Int. 2009;76(5):528–33.CrossRefGoogle Scholar
  45. 45.
    Wuhl E, van Stralen KJ, Verrina E, Bjerre A, Wanner C, Heaf JG, et al. Timing and outcome of renal replacement therapy in patients with congenital malformations of the kidney and urinary tract. Clin J Am Soc Nephrol. 2013;8(1):67–74.CrossRefGoogle Scholar
  46. 46.
    Ishikura K, Uemura O, Hamasaki Y, Nakai H, Ito S, Harada R, et al. Insignificant impact of VUR on the progression of CKD in children with CAKUT. Pediatr Nephrol. 2016;31(1):105–12.CrossRefGoogle Scholar
  47. 47.
    Ansari MS, Gulia A, Srivastava A, Kapoor R. Risk factors for progression to end-stage renal disease in children with posterior urethral valves. J Pediatr Urol. 2010;6(3):261–4.CrossRefGoogle Scholar
  48. 48.
    Salo J, Ikaheimo R, Tapiainen T, Uhari M. Childhood urinary tract infections as a cause of chronic kidney disease. Pediatrics. 2011;128(5):840–7.CrossRefGoogle Scholar
  49. 49.
    Doganis D, Siafas K, Mavrikou M, Issaris G, Martirosova A, Perperidis G, et al. Does early treatment of urinary tract infection prevent renal damage? Pediatrics. 2007;120(4):e922–8.CrossRefGoogle Scholar
  50. 50.
    Coulthard MG. Vesicoureteric reflux is not a benign condition. Pediatr Nephrol. 2009;24(2):227–32.CrossRefGoogle Scholar
  51. 51.
    Venhola M, Uhari M. Vesicoureteral reflux, a benign condition. Pediatr Nephrol. 2009;24(2):223–6.CrossRefGoogle Scholar
  52. 52.
    Amaral S, Sayed BA, Kutner N, Patzer RE. Preemptive kidney transplantation is associated with survival benefits among pediatric patients with end-stage renal disease. Kidney Int. 2016;90(5):1100–8.CrossRefGoogle Scholar
  53. 53.
    Moist LM, Port FK, Orzol SM, Young EW, Ostbye T, Wolfe RA, et al. Predictors of loss of residual renal function among new dialysis patients. J Am Soc Nephrol. 2000;11(3):556–64.PubMedGoogle Scholar
  54. 54.
    Chesnaye NC, Schaefer F, Groothoff JW, Bonthuis M, Reusz G, Heaf JG, et al. Mortality risk in European children with end-stage renal disease on dialysis. Kidney Int. 2016;89(6):1355–62.CrossRefGoogle Scholar
  55. 55.
    Rana A, Gruessner A, Agopian VG, Khalpey Z, Riaz IB, Kaplan B, et al. Survival benefit of solid-organ transplant in the United States. JAMA Surg. 2015;150(3):252–9.CrossRefGoogle Scholar
  56. 56.
    Jung HW, Kim HY, Lee YA, Kang HG, Shin CH, Ha IS, et al. Factors affecting growth and final adult height after pediatric renal transplantation. Transplant Proc. 2013;45(1):108–14.CrossRefGoogle Scholar
  57. 57.
    Groothoff JW. Long-term outcomes of children with end-stage renal disease. Pediatr Nephrol. 2005;20(7):849–53.CrossRefGoogle Scholar
  58. 58.
    Goldstein SL, Graham N, Burwinkle T, Warady B, Farrah R, Varni JW. Health-related quality of life in pediatric patients with ESRD. Pediatr Nephrol. 2006;21(6):846–50.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Pediatrics, Division of NephrologyUniversity of California San FranciscoSan FranciscoUSA
  2. 2.Department of UrologyUniversity of California San FranciscoSan FranciscoUSA

Personalised recommendations