Pregnancy-Induced Uterine Vascular Remodelling and the Pathophysiology of Decidual Vasculopathy

  • Terry K. Morgan
  • W. Tony ParksEmail author


Maternal vasculopathy encompasses several related lesions, including incomplete physiologic remodelling, fibrinoid necrosis, and atherosis, that occur within the maternal blood vessels feeding the placenta. These lesions are thought to develop early in gestation, but their effects do not generally arise until the latter half of pregnancy. The alterations in the maternal vasculature change both the volume and flow characteristics of the blood entering the placenta, resulting in hypoxic/oxidative damage. Maternal vasculopathy is associated most closely with the hypertensive disorders of pregnancy but can also be found in several other adverse pregnancy outcomes.


Atherosis Fibrinoid Fibrinoid necrosis Physiologic change Vascular remodelling Decidual vasculopathy Extravillous trophoblasts Placenta 


  1. 1.
    Burton GJ, Jauniaux E, Watson AL. Maternal arterial connections to the placental intervillous space during the first trimester of human pregnancy: the Boyd collection revisited. Am J Obstet Gynecol. 1999;181:718–24.CrossRefGoogle Scholar
  2. 2.
    Roberts V, Morgan T, Bednarek P, Morita M, Burton G, Lo J, Frias A. Early first trimester uteroplacental blood flow and the progressive disintegration of spiral artery plugs: new insights from contrast-enhanced ultrasound and tissue histopathology. Hum Reprod. 2017;32:2382–93.CrossRefGoogle Scholar
  3. 3.
    Pijnenborg R, Dixon H, Robertson W, Brosens I. Trophoblastic invasion of human decidua from 8 to 18 weeks of pregnancy. Placenta. 1980;1:3–19.CrossRefGoogle Scholar
  4. 4.
    Brosens I, Pijnenborg R, Vercruysse L, Romero R. The “Great Obstetrical Syndromes” are associated with disorders of deep implantation. Am J Obstet Gynecol. 2011;204:193–201.CrossRefGoogle Scholar
  5. 5.
    Khong TY. Acute atherosis in pregnancies complicated by hypertension, small-for-gestational- age infants, and diabetes mellitus. Arch Pathol Lab Med. 1991;115:722–5.PubMedGoogle Scholar
  6. 6.
    Arias F, Rodriquez L, Rayne SC, Kraus FT. Maternal placental vasculopathy and infection: two distinct subgroups among patients with preterm labor and preterm ruptured membranes. Am J Obstet Gynecol. 1993;168:585–91.CrossRefGoogle Scholar
  7. 7.
    Brosens I, Robertson W, Dixon H. The role of the spiral arteries in the pathogenesis of preeclampsia. Obstet Gynecol Annu. 1972;1:177–91.PubMedGoogle Scholar
  8. 8.
    Manuck TA, Esplin MS, Biggio J, et al. The phenotype of spontaneous preterm birth: application of a clinical phenotyping tool. Am J Obstet Gynecol. 2015;487:e1–11.Google Scholar
  9. 9.
    Leavey K, Benton SJ, Grynspan D, Kingdom JC, Bainbridge SA, Cox BJ. Unsupervised placental gene expression profiling identifies clinically relevant subclasses of human preeclampsia. Hypertension. 2016;68:137–47.CrossRefGoogle Scholar
  10. 10.
    Esplin MS, Manuck TA, Varner MW, Christensen B, Biggio J, Bukowski R, et al. Cluster analysis of spontaneous preterm birth phenotypes identifies potential associations among preterm birth mechanisms. Am J Obstet Gynecol. 2015;213:429.e1–9.CrossRefGoogle Scholar
  11. 11.
    Khong TY, Mooney EE, Ariel I, Balmus NC, et al. Sampling and definitions of placental lesions: Amsterdam Placental Workshop Group consensus statement. Arch Pathol Lab Med. 2016;140:698–713.CrossRefGoogle Scholar
  12. 12.
    Pries AR, Reglin B, Secomb TW. Remodeling of blood vessels: responses of diameter and wall thickness to hemodynamic and metabolic stimuli. Hypertension. 2005;46:725–31.CrossRefGoogle Scholar
  13. 13.
    Khong TY, De Wolf F, Robertson WB, Brosens I. Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small-for-gestational age infants. Br J Obstet Gynaecol. 1986;93:1049–59.CrossRefGoogle Scholar
  14. 14.
    Kos M, Czernobilsky B, Hlupic L, Kunjko K. Pathological changes in placentas from pregnancies with preeclampsia and eclampsia with emphasis on persistence of endovascular trophoblastic plugs. Croat Med J. 2005;46:404–9.PubMedGoogle Scholar
  15. 15.
    Klebanoff MA. The collaborative perinatal project: a 50-year retrospective. Paediatr Perinat Epidemiol. 2009;20:727–32.Google Scholar
  16. 16.
    Kim YM, Chaemsaithong P, Romero R, Shaman M, Kim CJ, Kim J-S, et al. Placental lesions associated with acute atherosis. J Matern Fetal Neonatal Med. 2015;28:1554–62.CrossRefGoogle Scholar
  17. 17.
    Meekins JW, Pijnenborg R, Hanssens M, McFayden IR, Van Asshe A. A study of placental bed spiral arteries and trophoblast invasion in normal and severe pre-eclamptic pregnancies. BJOG. 1994;101:660–74.CrossRefGoogle Scholar
  18. 18.
    Kim YM, Bujold E, Chaiworapongsa T, Gomex R, Yoon BH, Thaler HT, Rotmensch S, Romero R. Failure of physiologic transformation of the spiral arteries in patients with preterm labor and intact membranes. Am J Obstet Gynecol. 2003;189:1063–9.CrossRefGoogle Scholar
  19. 19.
    Pijnenborg R, Vercruysse L, Hanssens M. The uterine spiral arteries in human pregnancy: facts and controversies. Placenta. 2006;27:939–58.CrossRefGoogle Scholar
  20. 20.
    Starzyk KA, Salafia CM, Pezzullo JC, et al. Quantitative differences in arterial morphometry define the placental bed in preeclampsia. Hum Pathol. 1997;28:353–8.CrossRefGoogle Scholar
  21. 21.
    Ward K, Hata A, Jeunemaitre X, et al. A molecular variant of angiotensinogen associated with preeclampsia. Nat Genet. 1993;4:59–61.CrossRefGoogle Scholar
  22. 22.
    Zhang G, Feenstra B, Bacelis J, et al. Genetic associations with gestational duration and spontaneous preterm birth. N Engl J Med. 2017;377:1156–67.CrossRefGoogle Scholar
  23. 23.
    Morgan T, Craven C, Lalouel JM, Ward K. Angiotensinogen Thr235 variant is associated with abnormal physiologic change of the uterine spiral arteries in first-trimester decidua. Am J Obstet Gynecol. 1999;180:95–102.CrossRefGoogle Scholar
  24. 24.
    Morgan T, Craven C, Nelson L, et al. Angiotensinogen T235 expression is elevated in decidual spiral arteries. J Clin Invest. 1997;100:1406–15.CrossRefGoogle Scholar
  25. 25.
    Morgan T, Craven C, Ward K. Human spiral artery renin-angiotensin system. Hypertension. 1998;32:683–7.CrossRefGoogle Scholar
  26. 26.
    Kulandavelu S, Whiteley K, Qu D, et al. Endothelial nitric oxide synthase deficiency reduces uterine blood blow, spiral artery elongation, and placental oxygenation in pregnant mice. Hypertension. 2012;60:231–8.CrossRefGoogle Scholar
  27. 27.
    Jauniaux E, Burton GJ. Pathophysiology of histological changes in early pregnancy loss. Placenta. 2005;26:114–23.CrossRefGoogle Scholar
  28. 28.
    Sebire NJ, Rees H, Paradina F, Fisher R, Foskett M, Seckl M, Newlands E. Extravillous endovascular implantation site trophoblast invasion is abnormal in complete versus partial molar pregnancies. Placenta. 2001;22:725–8.CrossRefGoogle Scholar
  29. 29.
    Schabel MC, Roberts VHJ, Lo JO, Platt S, Grant KA, Frias AE, Kroenke CD. Functional imaging of the nonhuman primate placenta with endogenous blood oxygen level-dependent contrast. Magn Reson Med. 2016;76:1551–62.CrossRefGoogle Scholar
  30. 30.
    Lo J, Roberts VH, Schabel MC, Wang X, Morgan TK, Liu Z, Studholme C, Kroenke CD, Frias AE. Novel detection of placental insufficiency by magnetic resonance imaging in the nonhuman primate. Reprod Sci. 2018;25:64–73.CrossRefGoogle Scholar
  31. 31.
    Rennie M, Whiteley K, Kulandavelu S, et al. 3D visualization and quantification by microcomputed tomography of late gestational changes in the arterial and venous feto-placental vasculature of the mouse. Placenta. 2007;28:833–40.CrossRefGoogle Scholar
  32. 32.
    Craven C, Morgan T, Ward K. Decidual spiral artery remodeling begins before cellular interaction with trophoblasts. Placenta. 1998;19:241–52.CrossRefGoogle Scholar
  33. 33.
    Kam EP, Gardner L, Loke YW, King [Moffett] A. The role of trophoblast in the physiological change in decidual spiral arteries. Hum Reprod. 1999;14:2131–8.CrossRefGoogle Scholar
  34. 34.
    Moffett A, Colucci F. Uterine NK cells: active regulators at the maternal-fetal interface. J Clin Invest. 2014;124:1872–9.CrossRefGoogle Scholar
  35. 35.
    Brosens I, Robertson W, Dixon H. The physiological response of the vessels of the placental bed to normal pregnancy. J Pathol Bacteriol. 1967;93:569–79.CrossRefGoogle Scholar
  36. 36.
    Collins SL, Welsh AW, Impey L, Noble JA, Stevenson GN. 3D fractional moving blood volume (3D-FMBV) demonstrates decreased first trimester placental vascularity in pre-eclampsia but not the term, small for gestation age baby. PLoS One. 2017;12:e0178675.CrossRefGoogle Scholar
  37. 37.
    Salomon C, Guanzon D, Scholz-Romero K, et al. Placental exosomes as early biomarker of preeclampsia: potential role of exosomal microRNAs across gestation. J Clin Endocrinol Metab. 2017;102:3182–94.CrossRefGoogle Scholar
  38. 38.
    Roberts JM, Myatt L, Spong CY, et al. Vitamins C and E to prevent complications of pregnancy-associated hypertension. N Engl J Med. 2010;362:1282–91.CrossRefGoogle Scholar
  39. 39.
    Myatt L, Clifton RG, Roberts JM, et al. First-trimester prediction of preeclampsia in nulliparous women at low risk. Obstet Gynecol. 2012;119:1234–42.CrossRefGoogle Scholar
  40. 40.
    Rolnik DL, Wright D, Poon LC, et al. Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N Engl J Med. 2017;377:613–22.CrossRefGoogle Scholar
  41. 41.
    Mehta V, Ofir K, Swanson A, Kloczko E, Boyd M, Barker H, et al. Gene targeting to the uteroplacental circulation of pregnant Guinea pigs. Reprod Sci. 2016;23:1087–95.CrossRefGoogle Scholar
  42. 42.
    Hamilton WJ, Boyd JD. Development of the human placenta. J Anat. 1960;94:297–328.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Harris JWS, Ramsey EM. The morphology of human uteroplacental vasculature. Contrib Embryol Carnegie Inst Wash. 1966;38:43–58.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PathologyOregon Health and Science UniversityPortlandUSA
  2. 2.Department of PathologyNorthwestern University Feinberg School of MedicineChicagoUSA

Personalised recommendations