Skip to main content

Presence of Nucleated Red Blood Cells

  • Chapter
  • First Online:
Pathology of the Placenta
  • 2208 Accesses

Abstract

Nucleated red blood cells (nRBCs) originate in blood islands of the yolk sac at 16–20 days of gestation. Within the extraembryonic (placental) compartment, nRBCs begin to populate villous capillaries of the developing embryo at ∼6 weeks postconception and remain prevalent until the end of the first trimester. Thereafter, their presence decreases so that at term, under normal circumstances of delivery, nRBCs are inapparent upon cursory examination in the placental fetal vasculature. Readily identifiable nRBCs are present on placental examination at term in a number of clinical circumstances and in conjunction with a variety of placental processes. Highlights are considered below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tavian M, Peault B. Embryonic development of the human hematopoietic system. Int J Dev Biol. 2005;49:243–50.

    Article  CAS  Google Scholar 

  2. McGrath KE, Koniski AD, Malik J, et al. Circulation is established in a stepwise pattern in the mammalian embryo. Blood. 2003;101:1669–76.

    Article  CAS  Google Scholar 

  3. Choi K, Kennedy M, Kazarov A, et al. A common precursor for hematopoietic and endothelial cells. Development. 1998;125:725–32.

    CAS  PubMed  Google Scholar 

  4. Dzierzak E, Philipsen S. Erythropoiesis: Development and Differentiation. Cold Spring Harb Perspect Med. 2013;3:a011601.

    Article  Google Scholar 

  5. Hermansen MC. Nucleated red blood cells in the fetus and Newborn. Arch Dis Child Fetal Neonatal Ed. 2001;84:F211–5.

    Article  CAS  Google Scholar 

  6. Christensen RD, Henry E, Andres RL, Bennett ST. Reference ranges for blood concentrations of nucleated red blood cells in neonates. Neonatology. 2011;99:289–94.

    Article  Google Scholar 

  7. Rolfo A, Maconi M, Cardaropoli S, et al. Nucleated red blood cells in term fetuses: reference values using an automated analyzer. Neonatology. 2007;92:205–8.

    Article  Google Scholar 

  8. Hanlon-Lundberg KM, Kirby RS, Gandhi S, et al. Nucleated red blood cells in cord blood of singleton term neonates. Am J Obstet Gynecol. 1997;176:1149–54.

    Article  Google Scholar 

  9. McCarthy JM, Capullari T, Thompson Z, et al. Umbilical cord nucleated red blood cell counts: normal values and the effect of labor. J Perinatol. 2006;26:89–92.

    Article  CAS  Google Scholar 

  10. Perrone S, Vezzosi P, Longini M, et al. Nucleated red blood cell count in term and preterm newborns: reference values at birth. Arch Dis Child Fetal Neonatal. 2005;90:F174–5.

    Article  CAS  Google Scholar 

  11. Lewis AB, Sadeghi M. Acidemia potentiates the plasma catecholamine response to hypoxemia in fetal sheep. Biol Neonate. 1987;52:285–91.

    Article  CAS  Google Scholar 

  12. Ferber A, Minior VK, Bornstein E, et al. Fetal “non-reassuring status” is associated with elevation of nucleated red blood cell counts and interleukin-6. Am J Obstet Gynecol. 2005;192:1427–9.

    Article  Google Scholar 

  13. von Lindern M, Zauner W, Mellitzer G, et al. The glucocorticoid receptor cooperates with the erythropoietin receptor and c-Kit to enhance and sustain proliferation of erythroid progenitors in vitro. Blood. 1999;94:550–9.

    Google Scholar 

  14. Falchi M, Varricchio L, Martelli F, et al. Dexamethasone targeted directly to macrophages induces macrophage niches that promote erythroid expansion. Haematologica. 2015;100:178–87.

    Article  CAS  Google Scholar 

  15. Stachon A, Bolulu O, Holland-Letz T, et al. Association between nucleated red blood cells in blood and the levels of erythropoietin, interleukin 3, interleukin 6, and interleukin 12p70. Shock. 2005;24:34–9.

    Article  CAS  Google Scholar 

  16. Widness JA, Teramo KA, Clemons GK, et al. Temporal response of immunoreactive erythropoietin to acute hypoxemia in fetal sheep. Pediatr Res. 1986;20:15–9.

    Article  CAS  Google Scholar 

  17. Yeruchimovich M, Mimouni FB, Green DW, et al. Nucleated red blood cells in healthy infants of women with gestational diabetes. Obstet Gynecol. 2000;95:84–6.

    CAS  PubMed  Google Scholar 

  18. Şaracoglu F, Sahin I, Eser E, et al. Nucleated red blood cells as a marker in acute and chronic fetal asphyxia. Int J Gynaecol Obstet. 2000;71:113–8.

    Article  Google Scholar 

  19. Hanlon-Lundberg KM, Kirby RS. Nucleated red blood cells as a marker of acidemia in term neonates. Am J Obstet Gynecol. 1999;181:196–201.

    Article  CAS  Google Scholar 

  20. Ferber A, Grassi A, Akyol D, et al. The association of fetal heart rate patterns with nucleated red blood cell counts at birth. Am J Obstet Gynecol. 2003;188:1228–30.

    Article  Google Scholar 

  21. Goel M, Dwivedi R, Gohiya P, Hedge D. Nucleated red blood cell in cord blood as a marker of perinatal asphyxia. J Clin Neonatol. 2013;2:179–82.

    Article  Google Scholar 

  22. Boskabadi H, Zakerihamidi M, Sadeghian MH, et al. Nucleated red blood cells count as a prognostic biomarker in predicting the complications of asphyxia in neonates. J Matern Fetal Neonatal Med. 2016;24:1–6.

    Google Scholar 

  23. Walsh BH, Boylan GB, Dempsey EM, et al. Association of nucleated red blood cells and severity of encephalopathy in normothermic and hypothermic infants. Acta Paediatr. 2013;102:e64–7.

    Article  CAS  Google Scholar 

  24. Ghosh B, Mittal S, Kumar S, Dadhwal V. Prediction of perinatal asphyxia with nucleated red blood cells in cord blood of newborns. Int J Gynaecol Obstet. 2003;81:267–71.

    Article  CAS  Google Scholar 

  25. Li J, Kobata K, Kamei Y, et al. Nucleated red blood cell counts: an early predictor of brain injury and 2-year outcome in neonates with hypoxicischemic encephalopathy in the era of cooling-based treatment. Brain Dev. 2014;36:472–8.

    Article  Google Scholar 

  26. Buonocore G, Perrone S, Gioia D, et al. Nucleated red blood cell count at birth as an index of perinatal brain damage. Am J Obstet Gynecol. 1999;181:1500–5.

    Article  CAS  Google Scholar 

  27. Korst LM, Phelan JP, Ahn MO, Martin GI. Nucleated red blood cells: an update on the marker for fetal asphyxia. Am J Obstet Gynecol. 1996;175(4 Pt 1):843–6.

    Article  CAS  Google Scholar 

  28. Redline RW. Elevated circulating fetal nucleated red blood cells and placental pathology in term infants who develop cerebral palsy. Hum Pathol. 2008;39:1378–84.

    Article  Google Scholar 

  29. Bryant C, Beall M, McPhaul L, Forston W, Ross M. Do placental sections accurately reflect umbilical cord nucleated red blood cell differential counts? J Mat Fetal Neonatal Med. 2006;19:105–8.

    Article  Google Scholar 

  30. Spencer MK, Khong TY, Matthews BL, MacLennan AH. Haematopoietic indicators of fetal metabolic acidosis. Aust N Z J Obstet Gynaecol. 2000;40:286–9.

    Article  CAS  Google Scholar 

  31. Boskabadi H, Zakerihamidi M, Sadeghian MH, et al. Nucleated red blood cells count as a prognostic biomarker in predicting the complications of asphyxia in neonates. J Matern Fetal Neonatal Med. 2017;30:2551–6.

    Article  CAS  Google Scholar 

  32. Cohen MC, Peres LC, Al-Adnani M, et al. Increased number of fetal nucleated red blood cells in the placentas of term or near-term stillborn and neonates correlates with the presence of diffuse intradural hemorrhage in the perinatal period. Pediatr Dev Pathol. 2014;17:1–9.

    Article  Google Scholar 

  33. Walsh BH, Boylan GB, Murray DM. Nucleated red blood cells and early EEG: predicting Sarnat stage and two year outcome. Early Hum Dev. 2011;87:335–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta C. Cohen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cohen, M.C., Boyd, T.K. (2019). Presence of Nucleated Red Blood Cells. In: Khong, T., Mooney, E., Nikkels, P., Morgan, T., Gordijn, S. (eds) Pathology of the Placenta. Springer, Cham. https://doi.org/10.1007/978-3-319-97214-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97214-5_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97213-8

  • Online ISBN: 978-3-319-97214-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics