Skip to main content

Increased Syncytial Knot Formation

  • Chapter
  • First Online:
Pathology of the Placenta

Abstract

Syncytial knots are a common histologic feature of the placenta. This overarching term includes four specific subtypes of syncytial knots, including syncytial sprouts, true knots, false knots and syncytial bridges. Wave-like syncytial knots represent a specific architectural arrangement of syncytial knots generally found at earlier gestational ages. Increased syncytial knots have long been associated with adverse pregnancy outcomes, including preeclampsia and fetal growth restriction, and are a defining feature of maternal vascular malperfusion. More specifically, increased syncytial knots appear to arise in response to hypoxic or hypoxia-reperfusion injury to the placenta.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gaunt M, Ockleford CD. Microinjection of human placenta. II. Biological application. Placenta. 1986;7:325–31.

    Article  CAS  Google Scholar 

  2. Vaughan OR, Rosario FJ, Powell TL, Jansson T. Regulation of placental amino acid transport and fetal growth. Prog Mol Biol Transl Sci. 2017;145:217–51.

    Article  CAS  Google Scholar 

  3. Sibley CP. Understanding placental nutrient transfer—why bother? New biomarkers of fetal growth. J Physiol. 2009;587:3431–40.

    Article  CAS  Google Scholar 

  4. Howell KR, Powell TL. Effects of maternal obesity on placental function and fetal development. Reproduction. 2017;153:R97–R108.

    Article  CAS  Google Scholar 

  5. Simpson RA, Mayhew TM, Barnes PR. From 13 weeks to term, the trophoblast of human placenta grows by the continuous recruitment of new proliferative units: a study of nuclear number using the disector. Placenta. 1992;13:501–12.

    Article  CAS  Google Scholar 

  6. Fogarty NM, Mayhew TM, Ferguson-Smith AC, Burton GJ. A quantitative analysis of transcriptionally active syncytiotrophoblast nuclei across human gestation. J Anat. 2011;219:601–10.

    Article  CAS  Google Scholar 

  7. Fogarty NM, Ferguson-Smith AC, Burton GJ. Syncytial knots (Tenney-Parker changes) in the human placenta: evidence of loss of transcriptional activity and oxidative damage. Am J Pathol. 2013;183:144–52.

    Article  Google Scholar 

  8. Ellery PM, Cindrova-Davies T, Jauniaux E, Ferguson-Smith AC, Burton GJ. Evidence for transcriptional activity in the syncytiotrophoblast of the human placenta. Placenta. 2009;30:329–34.

    Article  CAS  Google Scholar 

  9. Loukeris K, Sela R, Baergen RN. Syncytial knots as a reflection of placental maturity: reference values for 20-40 weeks’ gestational age. Pediatr Dev Pathol. 2010;13:305–9.

    Article  Google Scholar 

  10. Khong TY, Mooney EE, Ariel I, Balmus NC, Boyd TK, et al. Sampling and definitions of placental lesions: Amsterdam placental Workshop Group consensus statement. Arch Pathol Lab Med. 2016;140:698–713.

    Article  Google Scholar 

  11. Burton GJ. Intervillous connections in the mature human placenta: instances of syncytial fusion of section artifacts? J Anat. 1986;145:13–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Cantle SJ, Kaufmann P, Luckhardt M, Scweikhart G. Interpretation of syncytial sprouts and bridges in the human placenta. Placenta. 1987;8:221–34.

    Article  CAS  Google Scholar 

  13. Kaufmann P, Huppertz B. Tenney-Parker changes and apoptotic versus necrotic shedding of trophoblast in normal pregnancy and pre-eclampsia. In: Pre-eclampsia: etiology and clinical practice. New York: Cambridge University Press; 2007. p. 152–63.

    Google Scholar 

  14. Fitzgerald B, Levytska K, Kingdom J, Walker M, Baczyk D, Keating S. Villous trophoblast abnormalities in extremely preterm deliveries with elevated second trimester maternal serum hCG or inhibin-A. Placenta. 2011;32:339–45.

    Article  CAS  Google Scholar 

  15. Tenney B, Parker F. The placenta in toxemia of pregnancy. Obstet Gynecol. 1940;39:1000–5.

    Google Scholar 

  16. Klebanoff MA. The Collaborative Perinatal Project: a 50-year retrospective. Paediatr Perinat Epidemiol. 2009;23:2–8.

    Article  Google Scholar 

  17. Grether JK, Eaton A, Redline R, Bendon R, Benirschke K, Nelson K. Reliability of placental histology for using archived specimens. Paediatr Perinat Epidemiol. 1999;13:489–95.

    Article  CAS  Google Scholar 

  18. Redline R, Boyd T, Campbell C, et al. Maternal vascular underperfusion: nosology and reproducibility of placental reaction patterns. Pedatr Dev Pathol. 2004;7:237–49.

    Google Scholar 

  19. Senagore PK, Holzman CB, Parks WT, Catov JM. Working towards a reproducible method for quantifying placental syncytial knots. Pediatr Dev Pathol. 2016;19:389–400.

    Article  Google Scholar 

  20. Kidron D, Vainer I, Fisher Y, Sharony R. Automated image analysis of placental villi and syncytial knots in histological sections. Placenta. 2017;53:113–8.

    Article  Google Scholar 

  21. Kim YM, Chaemsaithong P, Romero R, Shaman M, Kim CJ, Kim J-S, Qureshi F, et al. Placental lesions associated with acute atherosis. J Matern Fetal Neonatal Med. 2015;28:1554–62.

    Article  Google Scholar 

  22. Salafia CM, Pezzullo JC, Lopez-Zeno JA, Simmens S, Minior VK, Vintzileos AM. Placental pathologic features of pre-term pre-eclampsia. Obstet Gynecol. 1995;173:1097–105.

    CAS  Google Scholar 

  23. Devisme L, Merlot B, Ego A, Houfflin-Debarge V, Deruelle P, Subtil D. A case-control study of placental lesions associated with pre-eclampsia. Int J Gynaecol Obstet. 1996;54:11–5.

    Article  Google Scholar 

  24. Salafia CM, Minior VK, Pezzullo JC, Popek EJ, Rosenkrantz TS, Vintzileos AM. Intrauterine growth restriction in infants less than thirty-two weeks gestation: associated placental pathologic features. Am J Obstet Gynecol. 1995;173:1049–57.

    Article  CAS  Google Scholar 

  25. Scifres CM, Parks WT, Feghali M, Caritis SN, Catov JM. Placental maternal vascular malperfusion and adverse pregnancy outcomes in gestational diabetes mellitus. Placenta. 2017;49:10–5.

    Article  Google Scholar 

  26. Iskender-Mazman D, Akcoren Z, Yigit S, Kale G, Korkmaz A, Yurdakok M, Durukan T. Placental findings of IUGR and non-IUGR. Turk J Pediatr. 2014;56:368–73.

    PubMed  Google Scholar 

  27. Spinillo A, Gardella B, Bariselli S, Alfei A, Silini E, Dal BB. Placental histopathological correlates of umbilical artery doppler velocimetry in pregnancies complicated by fetal growth restriction. Prenat Diagn. 2012;32:1263–72.

    Article  Google Scholar 

  28. Hecht JL, Allred EN, Kliman HJ, et al. Histologic characteristics of singleton placentas delivered before the 28th week of gestation. Pathology. 2008;40:372–6.

    Article  Google Scholar 

  29. Apel-Sarid L, Levy A, Holcberg G, Sheiner E. Term and preterm (<34 and <37 weeks gestation) placental pathologies associated with fetal growth restriction. Arch Gynecol Obstet. 2010;282:487–92.

    Article  Google Scholar 

  30. Morgan TK, Tolosa JE, Mele L, et al. Placental villous hypermaturation is associated with idiopathic preterm birth. J Matern Fetal Neonatal Med. 2013;26:647–53.

    Article  Google Scholar 

  31. Catov JM, Scifres CM, Caritis SN, Bertolet M, Larkin J, Parks WT. Neonatal outcomes following preterm birth classified according to placental features. Am J Obstet Gynecol. 2017;216:411.e1–411.e14.

    Article  Google Scholar 

  32. Leavey K, Benton SJ, Grynspan D, Kingdom JC, Bainbridge SA, Cox BJ. Unsupervised placental gene expression profiling identifies clinically relevant subclasses of human preeclampsia. Hypertension. 2016;68:137–47.

    Article  CAS  Google Scholar 

  33. Manuck TA, Esplin MS, Biggio J, et al. The phenotype of spontaneous preterm birth: application of a clinical phenotyping tool. Am J Obstet Gynecol. 2015;487:e1–11.

    Google Scholar 

  34. Esplin MS, Manuck TA, Varner MW, Christensen B, Biggio J, Bukowski R, et al. Cluster analysis of spontaneous preterm birth phenotypes identifies potential associations among preterm birth mechanisms. Am J Obstet Gynecol. 2015;213:429.e1–9.

    Article  Google Scholar 

  35. Fogarty NM, Burton GJ, Ferguson-Smith AC. Different epigenetic states define syncytiotrophoblast and cytotrophoblast nuclei in the trophoblast of the human placenta. Placenta. 2015;36:796–802.

    Article  CAS  Google Scholar 

  36. Rogers BB, Momirova V, Dizon-Townson D, et al. Avascular villi, increased syncytial knots, and hypervascular villi are associated with pregnancies complicated by factor V Leiden mutation. Pediatr Dev Pathol. 2010;13:341–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Tony Parks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parks, W.T. (2019). Increased Syncytial Knot Formation. In: Khong, T., Mooney, E., Nikkels, P., Morgan, T., Gordijn, S. (eds) Pathology of the Placenta. Springer, Cham. https://doi.org/10.1007/978-3-319-97214-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97214-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97213-8

  • Online ISBN: 978-3-319-97214-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics