Advertisement

Distal Villous Hypoplasia

  • Peter G. J. Nikkels
  • Carmen A. H. Severens-Rijvers
Chapter

Abstract

Distal villous hypoplasia is an abnormal development of placental villi with an apparent increase in intervillous space. The total number of villi is decreased in the centre of the placenta, and the terminal villi are extremely small on cut surface and long and slender, and the villi have fewer branches in comparison with normal villi. Distal villous hypoplasia is associated with low placental weight and fetal growth restriction with absent or reversed end-diastolic flow of the umbilical artery. Distal villous hypoplasia can be seen in normotensive or hypertensive pregnancies with severe fetal growth restriction.

Keywords

Distal villous hypoplasia Fetal growth restriction Abnormal placental development Preeclampsia Intervillous hypoxia 

References

  1. 1.
    Benirschke K, Burton GJ, Baergen RN. Pathology of the human placenta. 6th ed. Berlin, Heidelberg: Springer-Verlag; 2012.CrossRefGoogle Scholar
  2. 2.
    Charnock-Jones DS, Kaufmann P, Mayhew TM. Aspects of human fetoplacental vasculogenesis and angiogenesis. I. Molecular regulation. Placenta. 2004;25:103–13.CrossRefGoogle Scholar
  3. 3.
    Kaufmann P, Mayhew TM, Charnock-Jones DS. Aspects of human fetoplacental vasculogenesis and angiogenesis. II. Changes during normal pregnancy. Placenta. 2004;25:114–26.CrossRefGoogle Scholar
  4. 4.
    Jackson MR, Walsh AJ, Morrow RJ, Mullen JB, Lye SJ, Ritchie JW. Reduced placental villous tree elaboration in small-for-gestational-age pregnancies: relationship with umbilical artery Doppler waveforms. Am J Obstet Gynecol. 1995;172:518–25.CrossRefGoogle Scholar
  5. 5.
    Krebs C, Macara LM, Leiser R, Bowman AW, Greer IA, Kingdom JC. Intrauterine growth restriction with absent end-diastolic flow velocity in the umbilical artery is associated with maldevelopment of the placental terminal villous tree. Am J Obstet Gynecol. 1996;175:1534–42.CrossRefGoogle Scholar
  6. 6.
    Veerbeek JH, Nikkels PG, Torrance HL, Gravesteijn J, Post Uiterweer ED, Derks JB, et al. Placental pathology in early intrauterine growth restriction associated with maternal hypertension. Placenta. 2014;35:696–701.CrossRefGoogle Scholar
  7. 7.
    Stark MW, Clark L, Craver RD. Histologic differences in placentas of preeclamptic/eclamptic gestations by birthweight, placental weight, and time of onset. Pediatr Dev Pathol. 2014;17:181–9.CrossRefGoogle Scholar
  8. 8.
    Mayhew TM, Charnock-Jones DS, Kaufmann P. Aspects of human fetoplacental vasculogenesis and angiogenesis. III. Changes in complicated pregnancies. Placenta. 2004;25:127–39.CrossRefGoogle Scholar
  9. 9.
    Mukherjee A, Chan AD, Keating S, Redline RW, Fritsch MK, Machin GA, et al. The placental distal villous hypoplasia pattern: Interobserver agreement and automated fractal dimension as an objective metric. Pediatr Dev Pathol. 2016;19:31–6.CrossRefGoogle Scholar
  10. 10.
    Redline RW, Boyd T, Campbell V, Hyde S, Kaplan C, Khong TY, et al. Maternal vascular underperfusion: nosology and reproducibility of placental reaction patterns. Pediatr Dev Pathol. 2004;7:237–49.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Kingdom JC, Rodeck CH, Kaufmann P. Umbilical artery Doppler—more harm than good? Br J Obstet Gynaecol. 1997;104:393–6.CrossRefGoogle Scholar
  12. 12.
    Abellar RG, Pepperell JR, Greco D, Gundogan F, Kostadinov S, Schwartz J, et al. Effects of chemotherapy during pregnancy on the placenta. Pediatr Dev Pathol. 2009;12:35–41.CrossRefGoogle Scholar
  13. 13.
    Burton GJ, Charnock-Jones DS, Jauniaux E. Regulation of vascular growth and function in the human placenta. Reproduction. 2009;138:895–902.CrossRefGoogle Scholar
  14. 14.
    Lash GE, Naruse K, Innes BA, Robson SC, Searle RF, Bulmer JN. Secretion of angiogenic growth factors by villous cytotrophoblast and extravillous trophoblast in early human pregnancy. Placenta. 2010;31:545–8.CrossRefGoogle Scholar
  15. 15.
    McCarthy C, Cotter FE, McElwaine S, Twomey A, Mooney EE, Ryan F, et al. Altered gene expression patterns in intrauterine growth restriction: potential role of hypoxia. Am J Obstet Gynecol. 2007;196:70.e1–6.CrossRefGoogle Scholar
  16. 16.
    Veerbeek JH, Brouwers L, Koster MP, Koenen SV, van Vliet EO, Nikkels PG, et al. Spiral artery remodeling and maternal cardiovascular risk: the spiral artery remodeling (SPAR) study. J Hypertens. 2016;34:1570–7.CrossRefGoogle Scholar
  17. 17.
    Veerbeek JH, Hermes W, Breimer AY, van Rijn BB, Koenen SV, Mol BW, et al. Cardiovascular disease risk factors after early-onset preeclampsia, late-onset preeclampsia, and pregnancy-induced hypertension. Hypertension. 2015;65:600–6.CrossRefGoogle Scholar
  18. 18.
    Brosens I, Dixon HG, Robertson WB. Fetal growth retardation and the arteries of the placental bed. Br J Obstet Gynaecol. 1977;84:656–63.CrossRefGoogle Scholar
  19. 19.
    Gerretsen G, Huisjes HJ, Elema JD. Morphological changes of the spiral arteries in the placental bed in relation to pre-eclampsia and fetal growth retardation. Br J Obstet Gynaecol. 1981;88:876–81.CrossRefGoogle Scholar
  20. 20.
    Sebire NJ. Umbilical artery Doppler revisited: pathophysiology of changes in intrauterine growth restriction revealed. Ultrasound Obstet Gynecol. 2003;21:419–22.CrossRefGoogle Scholar
  21. 21.
    Hampl V, Bibova J, Stranak Z, Wu X, Michelakis ED, Hashimoto K, et al. Hypoxic fetoplacental vasoconstriction in humans is mediated by potassium channel inhibition. Am J Physiol Heart Circ Physiol. 2002;283:H2440–9.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Peter G. J. Nikkels
    • 1
  • Carmen A. H. Severens-Rijvers
    • 2
  1. 1.Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
  2. 2.Department of PathologyMaastricht University Medical CenterMaastrichtThe Netherlands

Personalised recommendations