Advertisement

Mathematical Learning and Its Difficulties in the Middle European Countries

  • Annemie DesoeteEmail author
  • Ann Dowker
  • Marcus Hasselhorn
Chapter

Abstract

Some children have severe and persistent difficulties with mathematics and are resistant to instruction. In this case, they are labelled as individuals with mathematical learning disabilities (MLD). In this chapter, the prevalence of MLD and the criteria used to define MLD in the UK, Germany and Belgium are described. Moreover, an introduction on the big picture and the PISA and TIMMS results as well as information on the educational policies is given. Finally the chapter elaborates on theories and educational practices and the role of research guiding practice in the Middle European countries.

Keywords

Mathematical learning disabilities Prevalence Criteria Theories Research Middle European 

References

  1. Barbaresi, W. J., Katusic, S. K., Colligan, R. C., Weaver, A. L., & Jacobsen, S. J. (2005). Learning disorder: Incidence in a population-based birth cohort, 1976–82, Rochester, Minn. Ambulatory Pediatrics, 5, 281–289.CrossRefGoogle Scholar
  2. Baten, E., & Desoete, A. (2016). Motivation and well-being in (a)typical numerical skills. Poster (genomineerd met de Jeannette Klingner posterprijs) at the 40th annual IARLD conference (28–30 June 2016) Texas.Google Scholar
  3. Baten, E., Desoete, A., Van de Velde, M.C., & Hantson, E. (2016). Bringing the gap between cognition and emotion in (a)typical numerical skills. Paper EARLI sig 15 conference on cognition, socio-emotional function and the environment: Bridging the divide. Leuven 29–30 August 2016.Google Scholar
  4. Baten, E., Praet, M., & Desoete, A. (2017). The relevance and efficacy of metacognition for instructional design in the domain of mathematics. ZDM, 851.  https://doi.org/10.1007/s11858-017-0851-y CrossRefGoogle Scholar
  5. BIS. (2011). BIS research paper 57: Skills for life survey headline findings. London: Department of Business, Innovation and Skills.Google Scholar
  6. Butterworth, B., Sashank, S., & Laurillard, D. (2011). Dyscalculia: From brain to education. Science, 332, 1049–1053.  https://doi.org/10.1126/science.1201536 CrossRefGoogle Scholar
  7. Bynner, J., & Parsons, S. (1997). Does numeracy matter? London: Basic Skills Agency.Google Scholar
  8. Byrnes, J. P., & Wasik, B. A. (2009). Factors predictive of mathematics achievement in kindergarten, first and third grades: An opportunity–propensity analysis. Contemporary Educational Psychology, 34, 167–183.  https://doi.org/10.1016/j.cedpsych.2009.01.002 CrossRefGoogle Scholar
  9. Cappelletti, M., Butterworth, B., & Kopelman, M. (2012). Numeracy skills in patients with degenerative disorders and focal brain lesions: A neuropsychological investigation. Neuropsychology, 26, 1–19.CrossRefGoogle Scholar
  10. Ceulemans, A., Baten, E., Loeys, T., Hoppenbrouwers, K., Titeca, D., Rousseau, S., & Desoete, A. (2017). The relative importance of parental numerical opportunities, prerequisite knowledge and parent involvement as predictors for early math achievement in young children. Interdisciplinary Education and Psychology, 1(1):6. http://riverapublications.com/assets/files/pdf_files/the-relative-importance-of-parental-numerical-opportunitiesprerequisite- knowledge-and-parent-involv.pdfGoogle Scholar
  11. Ceulemans, A., Titeca, D., Loeys, T., Hoppenbrouwers, K., Rousseau, S., & Desoete, A. (2014). The sense of small number discrimination: The predictive value in infancy and toddlerhood for numerical competencies in kindergarten. Learning and Individual Differences, 39, 150–157.  https://doi.org/10.1016/j.lindif.2015.03.009 CrossRefGoogle Scholar
  12. Cowan, R., Donlan, C., Shepherd, D. L., Cole-Fletcher, R., Saxton, M., & Hurry, J. (2011). Basic calculation proficiency and mathematics achievement in elementary school children. Journal of Educational Psychology, 103, 786–803.CrossRefGoogle Scholar
  13. De Weerdt, F., Desoete, A., & Roeyers, H. (2013). Working memory in children with reading and/or mathematical disabilities. Journal of Learning Disabilities, 46, 461–472.CrossRefGoogle Scholar
  14. Dehaene, S., & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition, 1, 83–120.Google Scholar
  15. Delazer, M. (2003). Neuropsychological findings on conceptual knowledge of arithmetic. In A. Baroody & A. Dowker (Eds.), The development of arithmetical concepts and skills (pp. 385–407). Mahwah, NJ: Erlbaum.Google Scholar
  16. Desoete, A., & Baten, E. (2017). Indicators for a specific learning disorder in mathematics or dyscalculia in toddlers and in kindergarten children. Belgian Journal of Paediatrics, 19(2), 117–120.Google Scholar
  17. Desoete, A., Ceulemans, A., De Weerdt, F., & Pieters, S. (2012). Can we predict mathematical learning disabilities from symbolic and non-symbolic comparison tasks in kindergarten? British Journal of Educational Psychology, 82, 64–81.  https://doi.org/10.1348/2044-8279.002002 CrossRefGoogle Scholar
  18. Desoete, A., Praet, M., Titeca, D., & Ceulemans, A. (2013). Cognitive phenotype of mathematical learning disabilities: What can we learn from siblings? Research in Developmental Disabilities, 34, 404–412.  https://doi.org/10.1016/j.ridd.2012.08.022 CrossRefGoogle Scholar
  19. Desoete, A., Roeyers, H., & De Clercq, A. (2004). Children with mathematics learning disabilities in Belgium. Journal of Learning Disabilities, 37, 50–61.CrossRefGoogle Scholar
  20. Dix, A., & van der Meer, E. (2015). Arithmetic and algebraic problem solving and resource allocation: The distinct impact of fluid and numerical intelligence. Psychophysiology, 52(4), 544–554.  https://doi.org/10.1111/psyp.12367 CrossRefGoogle Scholar
  21. Dowker, A. (2001). Numeracy recovery: A pilot scheme for early intervention with young children with numeracy difficulties. Support for Learning, 16, 6–10.CrossRefGoogle Scholar
  22. Dowker, A. (2004). What works for children with mathematical difficulties? London: DfES.Google Scholar
  23. Dowker, A. (2005). Individual differences in arithmetic: Implications for psychology, neuroscience and education. Hove, UK: Psychology Press, Chapter 10.CrossRefGoogle Scholar
  24. Dowker, A. (2009). What works for children with mathematical difficulties? The effectiveness of intervention schemes. London: DCSF.Google Scholar
  25. Dowker, A. (2016). The componential nature of arithmetic: Implications for interventions for children with arithmetical difficulties. Paper given at EARLI SIG 15 conference, Leuven, August 29th, 2016.Google Scholar
  26. Dowker, A., & Sigley, G. (2010). Targeted interventions for children with arithmetical difficulties. British Journal of Educational Psychology, II, 7, 65–81.CrossRefGoogle Scholar
  27. Duncan, G. J., & Magnuson, K. (2009). The nature and impact of early achievement skills, attention and behavior problems. Presented at the Russel Sage Foundation conference on social inequality and educational outcomes, November 19–20.Google Scholar
  28. Dunn, S., Matthews, L., & Dowrick, N. (2010). Numbers count: Developing a national approach to intervention. In I. Thompson (Ed.), Issues in teaching numeracy in primary schools (pp. 224–234). Maidenhead, UK: Open University Press.Google Scholar
  29. Earl, S. (2003). Can the use of ‘RM Maths’ primary software contribute to the inclusion of year 7 and 8 students with communication disorders and a facility for these students within a mainstream secondary school? University of Sussex Institute of Education: MA thesis.Google Scholar
  30. Ehlert, A., & Fritz, A. (2013). Evaluation of a math training for children with learning difficulties. South African Journal of Childhood Education, 3, 117–141.CrossRefGoogle Scholar
  31. Ennemoser, M., Sinner, D., & Krajewski, K. (2015). Kurz-und langfristige Effekte einer entwicklungsorientierten Mathematikförderung bei Erstklässlern mit drohender Rechenschwäche. Lernen und Lernstörungen, 4, 43–59.CrossRefGoogle Scholar
  32. Fischbach, A., Schuchardt, K., Brandenburg, J., Klesczewski, J., Balke-Melcher, C., Schmidt, C., et al. (2013). Prävalenz von Lernschwächen und Lernstörungen: Zur Bedeutung der Diagnosekriterien. Lernen und Lernstörungen, 2, 65–76.CrossRefGoogle Scholar
  33. Fuchs, L. S., Fuchs, D., Compton, D. L., Bryant, J. D., Hamlett, C. L., & Seethaler, P. M. (2007). Mathematics screening and progress monitoring at first grade: Implications for responsiveness to intervention. Exceptional Children, 73, 311–330.CrossRefGoogle Scholar
  34. Fuchs, L. S., Fuchs, D., & Prentice, K. (2004). Responsiveness to mathematical problem-solving instruction: Comparing students at risk of mathematics disability with and without risk of reading disability. Journal of Learning Disabilities, 37, 293–306.CrossRefGoogle Scholar
  35. Geary, D. C. (2004). Mathematics and learning disabilities. Journal of Learning Disabilities, 37, 4–15.CrossRefGoogle Scholar
  36. Geary, D. C., Hoard, M. K., Byrd-Craven, J., Nugent, L., & Numtee, C. (2007). Cognitive mechanisms underlying achievement deficits in children with mathematical learning disability. Child Development, 78, 1343–1359.CrossRefGoogle Scholar
  37. Gerlach, M., Fritz, A., & Leutner, D. (2013). MARKO – T: Mathematik und Rechenkonzepte im Vorschul-und frühen Grundschulalter – Training. Göttingen, Germany: Hogrefe.Google Scholar
  38. Gifford, S., & Rockliffe, F. (2012). Mathematics difficulties: Does one approach fit all? Research in Mathematics Education, 14(1), 16.CrossRefGoogle Scholar
  39. Gillham, B., & Hesse, K. (2001). Basic number screening test: National numeracy strategy edition: Forms A & B, for ages 7 to 12 years (3rd ed.). London: Hodder Education.Google Scholar
  40. Gross, J. (2007). Supporting children with gaps in their mathematical understanding. Educational and Child Psychology, 24, 146–156.Google Scholar
  41. Hasselhorn, M., & Linke-Hasselhorn, K. (2013). Fostering early numerical skills at school start in children at risk for mathematical achievement problems: A small sample size training study. International Education Studies, 6, 213–220.CrossRefGoogle Scholar
  42. Hasselhorn, M., & Schuchardt, K. (2006). Lernstörungen. Eine kritische Skizze zur Epidemiologie. Kindheit und Entwicklung, 15, 208–215.  https://doi.org/10.1026/0942-5403.15.4.208 CrossRefGoogle Scholar
  43. Holmes, W., & Dowker, A. D. (2013). Catch up numeracy: A targeted intervention for children who are low attaining in mathematics. Research in Mathematics Education, 15, 249–265.CrossRefGoogle Scholar
  44. Jordan, J. A., Mulhern, G., & Wylie, J. (2009). Individual differences in trajectories of arithmetical development in typically achieving 5–7-year-olds. Journal of Experimental Child Psychology, 103, 455–468.CrossRefGoogle Scholar
  45. Krajewski, K., Nieding, G., & Schneider, W. (2007). Mengen, zählen, Zahlen. Die Welt der Mathematik verstehen (MZZ) [Quantities, counting, numbers. Understanding the world of mathematics]. Berlin, Germany: Cornelsen.Google Scholar
  46. Krajewski, K., & Simanowski, S. (2016). Entwicklungsorientierte Prävention von und Intervention bei Rechenschwäche mit “Mengen, zählen, Zahlen” (MZZ). In M. Hasselhorn & W. Schneider (Eds.), Förderprogramme für Vor-und Grundschule. Test & Trends, N.F. 14 (pp. 49–67). Göttingen, Germany: Hogrefe.Google Scholar
  47. Landerl, K., Bevan, A., & Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: A study of 8–9-year-old students. Cognition, 93, 99–125.  https://doi.org/10.1016/j.cognition.2003.11.004 CrossRefGoogle Scholar
  48. Mazzocco, M. M. M., Devlin, K. T., & McKenney, S. J. (2008). Is it a fact? Timed arithmetic performance of children with mathematical learning disabilities (MLD) varies as a function of how MLD is defined. Developmental Neuropsychology, 33, 318–344.CrossRefGoogle Scholar
  49. Meirsschaut, M., Monsecour, F., & Wilssens, M. (2015). Universeel ontwerp in de klas en op school op-stap naar redelijke aanpassingen https://www.arteveldehogeschool.be/sites/default/files/1.universeel_ontwerp_in_de_klas_en_op_school._op-stap_naar_redelijke_aanpassingen.pdf Google Scholar
  50. Moeller, K., Martignon, L., Wessolowski, S., & Nuerk, H.-C. (2011). Effects of finger counting on numerical development? The opposing views of neurocognition and mathematics education. Frontiers in Psychology, 2(328).  https://doi.org/10.3389/fpsyg.2011.00328
  51. Mussolin, C., Mejias, S., & Noël, M. P. (2010). Symbolic and nonsymbolic number comparison in children with and without dyscalculia. Cognition, 115, 10–25.CrossRefGoogle Scholar
  52. Noel, M. P. (2001). Numerical cognition. In R. Brenda (Ed.), The handbook of cognitive neuropsychology. What deficits reveal about the human mind (pp. 495–518). London: Psychology Press, Tylor & Frances.Google Scholar
  53. Parsons, S., & Bynner, J. (2005). Does numeracy matter more? London: NRDC.Google Scholar
  54. Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., et al. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116, 33–41.CrossRefGoogle Scholar
  55. Pieters, S., Roeyers, H., Rosseel, Y., Van Waelvelde, H., & Desoete, A. (2015). Identifying subtypes among children with developmental coordination disorder and mathematical learning disabilities, using model-based clustering. Journal of Learning Disabilities, 48(1), 83–95.  https://doi.org/10.1177/0022219413491288 CrossRefGoogle Scholar
  56. Praet, M., Titeca, D., Ceulemans, A., & Desoete, A. (2013). Language in the prediction of arithmetics in kindergarten and grade 1. Learning and Individual Differences, 27, 90–96.  https://doi.org/10.1016/j.lindif.2013.07.003 CrossRefGoogle Scholar
  57. Rousselle, L., & Noël, M. P. (2007). Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs non-symbolic number magnitude processing. Cognition, 102, 361–395.CrossRefGoogle Scholar
  58. Russell, R., & Ginsburg, H. P. (1984). Cognitive analysis of children’s mathematical difficulties. Cognition and Instruction, 1, 217–244.CrossRefGoogle Scholar
  59. Schmithorst, V. J., & Brown, R. D. (2004). Empirical validation of the triple-code model of numerical processing for complex math operations using functional MRI and group independent component analysis of the mental addition and subtraction of fractions. NeuroImage, 22, 1414–1420.CrossRefGoogle Scholar
  60. Stanescu-Cosson, R., Pinel, P., Van de Moortele, P. F., Le Bihan, D., Cohen, L., & Dehaene, S. (2000). Understanding dissociations in dyscalculia: A brain-imaging study of the impact of number size on the cerebral networks for exact and approximate calculation. Brain, 123, 2240–2255.CrossRefGoogle Scholar
  61. Stock, P., Desoete, A., & Roeyers, H. (2010). Detecting children with arithmetic disabilities from kindergarten: Evidence from a 3-year longitudinal study on the role of preparatory arithmetic abilities. Journal of Learning Disabilities, 43, 250–268.  https://doi.org/10.1177/0022219409345011 CrossRefGoogle Scholar
  62. Sturman, L. (2015). What is there to learn from international surveys of mathematical achievement? In R. Cohen Kadosh & A. Dowker (Eds.), Oxford handbook of numerical cognition (pp. 430–444). Oxford, UK: Oxford University Press.Google Scholar
  63. TIMMS. (2015). http://timss2015.org
  64. Torgerson, C. J., Wiggins, A., Torgerson, D. J., Ainsworth, H., Barmby, P., Hewitt, C., et al. (2011). Every child counts: The independent evaluation executive summary. London: Department for Education (DfE).Google Scholar
  65. Van Eimeren, L., Grabner, R. H., Koschutnik, K., Reishofer, G., Ebner, F., & Ansari, D. (2010). Structure-function relationships underlying calculation: A combined diffusion tensor imaging and fMRI study. NeuroImage, 52, 358–363.CrossRefGoogle Scholar
  66. Vanbinst, K., Ghesquière, P., & De Smedt, B. (2015). Does numerical processing uniquely predict first graders’ future development of single-digit arithmetic? Learning and Individual Differences, 37, 153–160.  https://doi.org/10.1016/j.lindif.2014.12.004 CrossRefGoogle Scholar
  67. Warrington, E. K. (1982). The fractionation of arithmetical skills: A single case study. Quarterly Journal of Experimental Psychology, 34A, 31–51.CrossRefGoogle Scholar
  68. Williams, P. (2008). Independent review of mathematics teaching in early years settings and primary schools. London: Department for Children, Schools and Families.Google Scholar
  69. Wilson, A., Andrew, S. G., Struthers, H., Rowe, V., Bogdanovic, R., & Wald, K. (2015). Dyscalculia and dyslexia in adults: Cognitive bases of comorbidity. Learning and Individual Differences, 37, 118–132.CrossRefGoogle Scholar
  70. Wilson, A., Revkin, S. K., Cohen, D., Cohen, L., & Dehaene, S. (2006). An open trial assessment for remediation of dyscalculia. Behavioral and Brain Functions, 2, 20.CrossRefGoogle Scholar
  71. Wright, R. J., Martland, J., & Stafford, A. (2006). Early numeracy: Assessment for teaching and intervention (2nd ed.). London: Paul Chapman.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Annemie Desoete
    • 1
    • 2
    Email author
  • Ann Dowker
    • 3
  • Marcus Hasselhorn
    • 4
    • 5
    • 6
  1. 1.Department of Experimental Clinical and Health PsychologyUniversity of GhentGhentBelgium
  2. 2.Artevelde University CollegeGhentBelgium
  3. 3.Mathematical Development and Disabilities Research GroupUniversity of OxfordOxfordUK
  4. 4.German Institute for International Educational Research (DIPF)Frankfurt am MainGermany
  5. 5.Center for Individual Development and Adaptive Education of Children at Risk (IDeA)Frankfurt am MainGermany
  6. 6.Department of Educational PsychologyInstitute for Psychology, Goethe-UniversityFrankfurt am MainGermany

Personalised recommendations