Advertisement

Comorbidity and Differential Diagnosis of Dyscalculia and ADHD

  • Helga KrinzingerEmail author
Chapter

Abstract

Whenever there is a choice between different treatment options for children with mathematical learning disability (MLD), it is important to understand the respective reasons. If mathematical difficulties are not a consequence of a core deficit in number magnitude representation but secondary to another problem (like ADHD or anxiety), this should be treated first. However, the results of a dyscalculia test alone are often insufficient to disentangle the possible reasons for a respective bad outcome.

The present qualitative error analysis was carried out in a clinical sample of 51 secondary school pupils to gain more information about possible cognitive markers for respective differential diagnoses. The main results were that a group with primary MLD (or dyscalculia) did not differ from a group with secondary MLD in a variety of procedural errors (e.g. trading errors) and in multiplication table errors. On the other hand, several error types which can only be explained by faulty conceptual understanding of calculation procedures or the decimal system of numbers were made significantly more often by children with primary MLD. In conclusion, the more conceptual errors a pupil makes in basic arithmetic tasks, the higher is the need for an individual learning therapy.

Keywords

Differential diagnosis Primary and secondary MLD ADHD Comorbidity Math anxiety Error analysis 

References

  1. Ackerman, P. T., Anhalt, J. M., & Dykman, R. A. (1986). Arithmetic automatization failure in children with attention and reading disorders: associations and sequela. Journal of Learning Disabilities, 4, 222–232.CrossRefGoogle Scholar
  2. Ackerman, P. T., Dykman, R. A., & Peters, J. E. (1977). Learning disabled boys as adolescents: Cognitive factors and achievement. Journal of the American Academy of Child Psychiatry, 16, 296–313.CrossRefGoogle Scholar
  3. American Psychiatric Association. (2013). DSM-5: Diagnostic and statistical manual of mental disorders (5th ed.). Washington, D.C.: American Psychiatric Association.CrossRefGoogle Scholar
  4. Angold, A., Costello, E. J., & Erkanli, A. (1999). Comorbidity. Journal of Child Psychology and Psychotherapy, 40, 57–87.CrossRefGoogle Scholar
  5. Arcelus, J., & Vostanis, P. (2005). Psychiatric comorbidity in children and adolescents. Current Opinion in Psychiatry, 18, 429–434.CrossRefGoogle Scholar
  6. Auerbach, J. G., Gross-Tsur, V., Manor, O., & Shalev, R. S. (2008). Emotional and behavioral characteristics over a six-year period in youth with persistent and nonpersistent dyscalculia. Journal of Learning Disabilities, 41, 263–273.CrossRefGoogle Scholar
  7. Badian, N. A. (1983). Dyscalculia and nonverbal disorders of learning. In H. R. Myklebust (Ed.), Progress in learning disabilities (Vol. 5, pp. 235–264). New York: Stratton.Google Scholar
  8. Barkley, R. A. (1997). Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychological Bulletin, 121(1), 65–94.CrossRefGoogle Scholar
  9. Benedetto-Nasho, E., & Tannock, R. (1999). Math computation, error patterns and stimulant effects in children with attention deficit hyperactivity disorder. Journal of Attention Disorders, 3, 121–134.CrossRefGoogle Scholar
  10. Booth, J. L., & Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology, 4, 189–201.CrossRefGoogle Scholar
  11. Bugden, S., & Ansari, D. (2015). Probing the nature of deficits in the “approximate number system” in children with persistent developmental dyscalculia. Developmental Science, 19, 817.  https://doi.org/10.1111/desc.12324 CrossRefGoogle Scholar
  12. Carlson, C. L., Pelham, W. E., Swanson, J. M., & Wagner, J. L. (1991). A divided attention analysis of the effects of methylphenidate on the arithmetic performance of children with attention-deficit hyperactivity disorder. Journal of Child Psychology and Psychiatry, 32, 463–471.CrossRefGoogle Scholar
  13. Costa, A. J., Silva, J. B., Pinhero-Chagas, P., Krinzinger, H., Lonnemann, J., Willmes, K., et al. (2011). A hand full of numbers: a role for offloading in arithmetics learning? Frontiers in Psychology, 2, 368.  https://doi.org/10.3389/fpsyg.2011.00368 CrossRefGoogle Scholar
  14. De Visscher, A., & Noël, M.-P. (2014). The detrimental effect of interference in multiplication fact storing: typical development and individual differences. Journal of Experimental Psychology: General, 143, 2380–2400.CrossRefGoogle Scholar
  15. De Visscher, A., & Noël, M.-P. (2015). Serial-order learning impairment and hypersensitivity-to-interference in dyscalculia. Cognition, 144, 38–48.CrossRefGoogle Scholar
  16. Desoete, A. (2008). Co-morbidity in mathematical learning disabilities: Rule or exception? The Open Rehabilitation Journal, 1, 15–16.CrossRefGoogle Scholar
  17. Dilling, H., Mombour, W., & Schmidt, M. H. (1993). Internationale Klassifikation psychischer Störungen: ICD-10. Bern: Verlag Hans Huber.Google Scholar
  18. Domahs, F., Krinzinger, H., & Willmes, K. (2008). Mind the gap between both hands: Evidence for internal finger-based number representations in children’s mental calculation. Cortex, 44, 359–367.CrossRefGoogle Scholar
  19. Douglas, V. I., Barr, R. G., O’Neill, M. E., & Britton, B. G. (1986). Short term effects of methylphenidate on the cognitive learning and academic performance of children with attention deficit disorder in the laboratory and the classroom. Journal of Child Psychology and Psychiatry, 27, 191–211.Google Scholar
  20. Eden, C., Heine, A., & Jacobs, A. M. (2013). Mathematics anxiety and its development in the course of formal schooling—A review. Psychology, 4, 27–35.  https://doi.org/10.4236/psych.2013.46A2005 CrossRefGoogle Scholar
  21. Elia, J., Welsh, P. A., Gullotta, C. S., & Rapoport, J. L. (1993). Classroom academic performance: Improvement with both methylphenidate and dextroamphetamine in ADHD boys. Journal of Child Psychology and Psychatry, 34, 785–804.CrossRefGoogle Scholar
  22. Friso-van den Bos, I., van der Ven, S. H. G., Kroesbergen, E. H., & van Luit, J. E. H. (2013). Working memory and mathematics in primary school children: A meta-analysis. Educational Research Review, 10, 29–44.CrossRefGoogle Scholar
  23. Geary, D. C. (1993). Mathematical disabilities: Cognitive, neuropsychological, and genetic components. Psychological Bulletin, 114, 345–362.CrossRefGoogle Scholar
  24. Geary, D. C. (2005). The role of cognitive theory in the study of learning disability in mathematics. Journal of Learning Disabilities, 38, 305–307.CrossRefGoogle Scholar
  25. Gilmore, C., Attridge, N., Clayton, S., Cragg, L., Johnson, S., Marlow, N., et al. (2013). Individual differences in inhibitory control, not non-verbal number acuity, correlate with mathematics achievement. PLoS One, 8, e67374.CrossRefGoogle Scholar
  26. Gross-Tsur, V., Manor, O., & Shalev, R. S. (1996). Developmental dyscalculia: prevalence and demographic features. Developmental Medicine and Child Neurology, 38, 25–33.CrossRefGoogle Scholar
  27. Günther, T., Holtkamp, K., Jolles, J., Herpertz-Dahlmann, B., & Konrad, K. (2004). Verbal memory and aspects of attentional control in children and adolescents with anxiety disorders or depressive disorders. Journal of Affective Disorders, 82, 265–269.CrossRefGoogle Scholar
  28. Hembree, R. (1990). The nature, effects, and relief of mathematics anxiety. Journal of Research in Mathematics Education, 21, 33–46.CrossRefGoogle Scholar
  29. Kaufmann, L., Mazzocco, M. M., Dowker, A., von Aster, M., Göbel, S. M., Grabner, R. H., & Rubinsten, O. (2013). Dyscalculia from a developmental and differential perspective. Frontiers in Psychology, 4, 516.  https://doi.org/10.3389/fpsyg.2013.00516 CrossRefGoogle Scholar
  30. Krinzinger, H. (2016). Differential diagnosis of primary and secondary mathematical learning disability – Indications from the dyscalculia test Basis-Math 4–8. Zeitschrift für Kinder- und Jugendpsychiatrie und Psychotherapie, 44, 1–13.  https://doi.org/10.1024/1422-4917/a000446 CrossRefGoogle Scholar
  31. Krinzinger, H., & Günther, T. (in press). Rechnen und Zahlenverarbeitung. In R. Drechsler & T. Günther (Eds.), Handbuch neuropsychologischer Testverfahren, Band 2: Kinder und Jugendliche. Göttingen: Hogrefe.Google Scholar
  32. Lindsay, R. L., Tomazic, T., Levine, M. D., & Accardo, P. J. (1999). Impact of attentional dysfunction in dyscalculia. Developmental Medicine and Child Neurology, 41, 639–642.CrossRefGoogle Scholar
  33. Moran, T. P. (2016). Anxiety and working memory capacity: A meta-analysis and narrative review. Psychological Bulletin, 142(8), 831–864.CrossRefGoogle Scholar
  34. Moreno-De-Luca, A., Myers, S. M., Challman, T. D., Moreno-De-Luca, D., Evans, D. W., & Ledbetter, D. H. (2013). Developmental brain dysfunction: Revival and expansion of old concepts based on new genetic evidence. The Lancet, 12, 406–414.CrossRefGoogle Scholar
  35. Moser-Opitz, E., Reusser, L., Moeri Müller, M., Anliker, B., Wittich, C., & Freesemann, C. (2010). Basisdiagnostik Mathematik für die Klassen 4–8 (BASIS-MATH 4–8). Bern: Huber.Google Scholar
  36. Paglin, M., & Rufolo, A. M. (1990). Heterogeneous human capital, occupation choice, and male-female earning differences. Journal of Labor Economics, 8, 123–144.CrossRefGoogle Scholar
  37. Parsons, S. & Bynner, J. (2005). .Does numeracy matter more? Retrieved from: http://nrdc.org.uk/publications
  38. Passolunghi, M. C., Cargnelutti, E., & Pastore, M. (2014). The contribution of general cognitive abilities and approximate number system to early mathematics. British Journal of Educational Psychology, 84, 631–649.  https://doi.org/10.1111/bjep.12054 CrossRefGoogle Scholar
  39. Petermann, F., & Petermann, U. (2007). Hamburg-Wechsler Intellligenztest für Kinder IV. Bern: Huber.Google Scholar
  40. Raghubar, K., Cirino, P., Barnes, M., Ewing-Cobbs, L., Fletcher, J., & Fuchs, L. (2009). Errors in multi-digit arithmetic and behavioural inattention in children with math difficulties. Journal of Learning Disabilities, 42, 356–371.CrossRefGoogle Scholar
  41. Ramirez, G., & Beilock, S. L. (2011). Writing about testing worries boosts exam performance in the classroom. Science, 331(6014), 211–213.CrossRefGoogle Scholar
  42. Rapin, I. (2014). Classification of behaviorally defined disorders: Biology versus the DSM. Journal of Autism and Developmental Disorders, 44, 2661–2666.CrossRefGoogle Scholar
  43. Rubinsten, O., Bedard, A.-C., & Tannock, R. (2008). Methylphenidate has differential effects on numerical abilities in ADHD children with and without co-morbid mathematical difficulties. The Open Psychology Journal, 1, 11–17.CrossRefGoogle Scholar
  44. Rubinsten, O., & Henik, A. (2009). Developmental dyscalculia: different mechanisms might not mean different mechanisms. Trends in Cognitive Sciences, 13, 92–99.CrossRefGoogle Scholar
  45. Samet, S., Nunes, E. V., & Hasin, D. (2004). Diagnosing comorbidity: concepts, criteria, and methods. Acta Neuropsychiatrica, 16, 9–18.CrossRefGoogle Scholar
  46. Seidman, L. J., Biederman, J., Weber, W., Hatch, M., & Faraone, S. V. (1998). Neuropsychological function in adults with attention-deficit hyperactivity disorder. Biological Psychiatry, 44, 260–268.CrossRefGoogle Scholar
  47. Shalev, R., Manor, O., & Gros-Tsur, V. (2005). Developmental dyscalculia: a prospective six-year follow-up. Developmental Medicine and Child Neurology, 47, 121–125.CrossRefGoogle Scholar
  48. Silva, D., Colvin, L., Glauert, R., Stanley, F., Srinivasjois, R., & Bower, C. (2015). Literacy and numeracy underachievement in boys and girls with ADHD. Journal of Attention Disorders.  https://doi.org/10.1177/1087054715596575
  49. Simms, V., Gilmore, C., Cragg, L., Clayton, S., Marlow, N., & Johnson, S. (2015). Nature and origins of mathematics difficulties in very preterm children: A different etiology than developmental dyscalculia. Pediatric Research, 77, 389–395.CrossRefGoogle Scholar
  50. Von Aster, M. (2000). Developmental cognitive neuropsychology of number processing and calculation: Varieties of developmental dyscalculia. European Child & Adolescent Psychiatry, 9, 41–57.CrossRefGoogle Scholar
  51. Von Aster, M., Weinhold Zulauf, M., & Horn, R. (2009). Neuropsychologische Testbatterie für Zahlenverarbeitung und Rechnen bei Kindern – revidierte Fassung. Zareki-R. Frankfurt/Main: Pearson.Google Scholar
  52. Wilcutt, E. G., Pennington, B. F., Duncan, L., Smith, S. D., Keenan, J. M., Wadsworth, S., et al. (2010). Understanding the complex etiologies of developmental disorders: Behavioral and molecular genetic approaches. Journal of Developmental & Behavioral Pediatrics, 31, 533–544.CrossRefGoogle Scholar
  53. Wilson, A. J., & Dehaene, S. (2007). Number sense and developmental dyscalculia. In D. Coch, G. Dawson, & K. Fischer (Eds.), Human behavior, learning and the developing brain: Atypical development (pp. 212–378). New York: Guilford.Google Scholar
  54. Zentall, S. (1990). Fact-retrieval automatization and math problem solving by learning disabled, attention-disordered, and normal adolescents. Journal of Educational Psychology, 82, 856–865.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Child and Adolescent Psychiatry, Section Child NeuropsychologyUniversity Hospital of the RWTH AachenAachenGermany

Personalised recommendations