Advertisement

Genetics of Dyscalculia 1: In Search of Genes

  • Maria Raquel S. CarvalhoEmail author
  • Vitor Geraldi Haase
Chapter

Abstract

In this chapter, we review the genetic foundations of developmental dyscalculia. We begin by briefly reviewing the clinical epidemiology of dyscalculia. Next, we review evidence for genetic susceptibility from familial aggregation and heritability estimates. Evidence for genetic susceptibility is substantial but associated with some limitations. Familial aggregation studies do not distinguish genetic from environmental influences. As heritability does not identify specific genes, it applies only at the population, not at the individual level. Current molecular genetic methods are helping to identify specific genes implicated in dyscalculia. We discuss evidence from genome-wide association studies on dyscalculia and on its comorbidities, mainly dyslexia, autism, and specific language impairment. The number of such studies is small but growing. So far, some candidate genes have been identified, but none of them has yet been confirmed in independent studies. Developmental dyscalculia is a heterogeneous phenotype. Future advances depend, among other things, on improvements in phenotype characterization and identification of families with clear phenotypic segregation.

Keywords

Dyscalculia Gene GWAS Heritability Familial aggregation 

References

  1. Asbury, K., & Plomin, R. (2013). G is for genes: The impact of genetics on education and achievement. Chichester/Oxford: Wiley Blackwell.CrossRefGoogle Scholar
  2. Ashkenazi, S., Black, J. M., Abrams, D. A., Hoeft, F., & Menon, V. (2013). Neurobiological underpinnings of math and reading learning disabilities. Journal of Learning Disabilities, 46, 549–569.CrossRefGoogle Scholar
  3. Auerbach, J. G., Gross-Tsur, V., Manor, O., & Shalev, R. S. (2008). Emotional and behavioral characteristics over a six-year period in youths with persistent and nonpersistent dyscalculia. Journal of Learning Disabilities, 41(3), 263–273.CrossRefGoogle Scholar
  4. Baron-Cohen, S., Murphy, L., Chakrabarti, B., Craig, I., Mallya, U., Lakatošová, S., et al. (2014). A genome wide association study of mathematical ability reveals an association at chromosome 3q29, a locus associated with autism and learning difficulties: A preliminary study. PLoS One, 9(5), e96374.CrossRefGoogle Scholar
  5. Bishop, D. V. M. (2015). The interface between genetics and psychology: Lessons from developmental dyslexia. Proceedings of the Royal Society of London, B, 282, 20143139.  https://doi.org/10.1098/rspb.2014.3139 CrossRefGoogle Scholar
  6. Brandler, W. M., & Paracchini, S. (2014). The genetic relationship between handedness and neurodevelopmental disorders. Trends in Molecular Medicine, 20, 83–90.  https://doi.org/10.1016/j.molmed.2013.10.008 CrossRefGoogle Scholar
  7. Budd, C. J. (2015). Promoting maths to the general public pp. In R. Kadosh & A. Dowker (Eds.), The Oxford handbook of numerical cognition (pp. 3–16). Oxford: Oxford University Press.  https://doi.org/10.1093/oxfordhb/9780199642342.013.024 CrossRefGoogle Scholar
  8. Butterworth, B., Varma, S., & Laurillard, D. (2011). Dyscalculia: From brain to education. Science, 332, 1049–1053.CrossRefGoogle Scholar
  9. Capano, L., Minden, D., Chen, S. X., Schachar, R. J., & Ickowicz, A. (2008). Mathematical learning disorder in school-age children with attention-deficit hyperactivity disorder. The Canadian Journal of Psychiatry, 53(6), 392–399.CrossRefGoogle Scholar
  10. Chen, H., Gu, X. H., Zhou, Y., Ge, Z., Wang, B., Siok, W. T., et al. (2017). A genome-wide association study identifies genetic variants associated with mathematics ability. Scientific Reports, 7, 40365.CrossRefGoogle Scholar
  11. Choi, K. H., Zepp, M. E., Higgs, B. W., Weickert, C. S., & Webster, M. J. (2009). Expression profiles of schizophrenia susceptibility genes during human prefrontal cortical development. Journal of Psychiatry and Neuroscience, 34(6), 450–458.Google Scholar
  12. Dehaene, S. (2011). The number sense: How the mind creates mathematics. Oxford: Oxford University Press.Google Scholar
  13. Desoete, A., Praet, M., Titeca, D., & Ceulemans, A. (2013). Cognitive phenotype of mathematical learning disabilities: What can we learn from siblings? Research in Developmental Disabilities, 34(1), 404–412.CrossRefGoogle Scholar
  14. Devine, A., Soltész, F., Nobes, A., Goswami, U., & Szűcs, D. (2013). Gender differences in developmental dyscalculia depend on diagnostic criteria. Learning and Instruction, 27, 31–39.CrossRefGoogle Scholar
  15. Docherty, S. J., Davis, O. S., Kovas, Y., Meaburn, E. L., Dale, P. S., Petrill, S. A., et al. (2010). A genome-wide association study identifies multiple loci associated with mathematics ability and disability. Genes, Brain and Behavior, 9(2), 234–247.  https://doi.org/10.1111/j.1601-183X.2009.00553.x. CrossRefGoogle Scholar
  16. Dowker, A. (2005). Individual differences in arithmetic: Implications for psychology, neuroscience and education. New York, NY: Psychology Press.CrossRefGoogle Scholar
  17. Ehlert, A., Schroeders, U., & Fritz, A. (2012). Kritik am Diskrepanzkriterium in der Diagnostik von Legasthenie und Dyskalkulie (criticizing the definition of dyscalculia and dyslexia via difference scores). Lernen und Lernstörungen, 1(3), 169–184.CrossRefGoogle Scholar
  18. Gamboa, L. F., & Waltenberg, F. D. (2012). Inequality of opportunity for educational achievement in Latin America: Evidence from PISA 2006–2009. Economics of Education Review, 31(5), 694–708.CrossRefGoogle Scholar
  19. Gross-Tsur, V., Manor, O., & Shalev, R. S. (1996). Developmental dyscalculia: Prevalence and demographic features. Developmental Medicine and Child Neurology, 38, 25–33.CrossRefGoogle Scholar
  20. Haase, V. G., & Carvalho, M. R. S. (2018). Genetics of dyscalculia 2: In search of endophenotypes. In A. Fritz-Stratmann, V. G. Haase, & P. Räsänen (Eds.), The international handbook of math learning difficulties: From the lab to the classroom. São Paulo, Brazil: Springer.Google Scholar
  21. Hale, J., Alfonso, V., Berninger, V., Bracken, B., Christo, C., Clark, E., et al. (2010). Critical issues in response-to-intervention, comprehensive evaluation, and specific learning disabilities identification and intervention: An expert white paper consensus. Learning Disability Quarterly, 33(3), 223–236.CrossRefGoogle Scholar
  22. Hart, S. A., Petrill, S. A., Willcutt, E., Thompson, L. A., Schatschneider, C., Deater-Deckard, K., & Cutting, L. E. (2010). Exploring how symptoms of attention-deficit/hyperactivity disorder are related to reading and mathematics performance: General genes, general environments. Psychological Science, 21(11), 1708–1715.  https://doi.org/10.1177/0956797610386617 CrossRefGoogle Scholar
  23. Haworth, C. M., Kovas, Y., Petrill, S. A., & Plomin, R. (2007). Developmental origins of low mathematics performance and normal variation in twins from 7 to 9 years. Twin Research and Human Genetics, 10(1), 106–117.CrossRefGoogle Scholar
  24. Hohol, M., Cipora, K., Willmes, K., & Nuerk, H. C. (2017). Bringing back the balance: Domain-general processes are also important in numerical cognition. Frontiers in Psychology, 8, 499.CrossRefGoogle Scholar
  25. Hu, B. H., Cai, Q., Hu, Z., Patel, M., Bard, J., Jamison, J., & Coling, D. (2012, Oct 24). Metalloproteinases and their associated genes contribute to the functional integrity and noise-induced damage in the cochlear sensory epithelium. The Journal of Neuroscience, 32(43), 14927–14941.  https://doi.org/10.1523/JNEUROSCI.1588-12.2012 CrossRefGoogle Scholar
  26. Kere, J. (2014). The molecular genetics and neurobiology of developmental dyslexia as model of a complex phenotype. Biochemical and Biophysical Research Communications, 452, 236–243.CrossRefGoogle Scholar
  27. Krapohl, E., Rimfeld, K., Shakeshaft, N. G., Trzaskowski, M., McMillan, A., Pingault, J. B., et al. (2014). The high heritability of educational achievement reflects many genetically influenced traits, not just intelligence. Proceedings of the National Academy of Sciences, 111(42), 15273–15278.CrossRefGoogle Scholar
  28. Landerl, K., Göbel, S. M., & Moll, K. (2013). Core deficit and individual manifestations of developmental dyscalculia (DD): The role of comorbidity. Trends in Neuroscience and Education, 2, 38–42.CrossRefGoogle Scholar
  29. Landerl, K., & Moll, K. (2010). Comorbidity of learning disorders: Prevalence and familial transmission. Journal of Child Psychology and Psychiatry, 51(3), 287–294.  https://doi.org/10.1111/j.1469-7610.2009.02164.x CrossRefGoogle Scholar
  30. Ludwig, K. U., Sämann, P., Alexander, M., Becker, J., Bruder, J., Moll, K., et al. (2013). A common variant in myosin-18B contributes to mathematical abilities in children with dyslexia and intraparietal sulcus variability in adults. Translational Psychiatry, 3(2), e229.CrossRefGoogle Scholar
  31. Malfatti, E., Böhm, J., Lacène, E., Beuvin, M., Brochier, G., Romero, N. B., & Laporte, J. (2015). A premature stop codon in MYO18B is associated with severe Nemaline myopathy with cardiomyopathy. Journal of Neuromuscular Diseases, 2(3), 219–227.  https://doi.org/10.3233/JND-150085 CrossRefGoogle Scholar
  32. Marino, C., Mascheretti, S., Riva, V., Cattaneo, F., Rigoletto, C., Rusconi, M., et al. (2011). Pleiotropic effects of DCDC2 and DYX1C1 genes on language and mathematics traits in nuclear families of developmental dyslexia. Behavior Genetics, 41(1), 67–76.  https://doi.org/10.1007/s10519-010-9412-7 CrossRefGoogle Scholar
  33. Mazzocco, M. M. M. (2007). Defining and differentiating mathematical learning disabilities and difficulties. In D. B. Berch & M. M. M. Mazzocco (Eds.), Why is math so hard for some children? The nature and origins of mathematical learning difficulties and disabilities (pp. 29–47). Baltimore: Brookes.Google Scholar
  34. Nava, C., Keren, B., Mignot, C., Rastetter, A., Chantot-Bastaraud, S., et al. (2014). Prospective diagnostic analysis of copy number variants using SNP microarrays in individuals with autism spectrum disorders. European Journal of Human Genetics, 22, 71–78.CrossRefGoogle Scholar
  35. Nishioka, M., Kohno, T., Tani, M., Yanaihara, N., Tomizawa, Y., Otsuka, A., et al. (2002). MYO18B, a candidate tumor suppressor gene at chromosome 22q12.1, deleted, mutated, and methylated in human lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 99, 12269–12274.CrossRefGoogle Scholar
  36. Oliveira-Ferreira, F., Costa, D. S., Micheli, L. R., Pinheiro-Chagas, P., & Haase, V. G. (2012). School achievement test: Normative data for a representative sample of elementary school children. Psychology & Neuroscience, 5, 157–164.CrossRefGoogle Scholar
  37. Paracchini, S., Diaz, R., & Stein, J. (2016). Advances in dyslexia genetics – New insights into the role of brain asymmetries. Advances in Genetics, 96, 53–97.  https://doi.org/10.1016/bs.adgen.2016.08.003 CrossRefGoogle Scholar
  38. Parsons, S., & Bynner, J. (2005). Does numeracy matter more? London: University of London, Institute of Education National Research and Development Centre for Adult Literacy and Numeracy. Available in: eprints.ioe.ac.uk/4758/1/parsons2006does.pdf
  39. Petrill, S. A., Kovas, Y., Hart, S. A., Thompson, L. A., & Plomin, R. (2009). The genetic and environmental etiology of high math performance in 10-year-old twins. Behavior Genetics, 39(4), 371–379.  https://doi.org/10.1007/s10519-009-9258-z CrossRefGoogle Scholar
  40. Pettigrew, K. A., Fajutrao Valles, S. F., Moll, K., Northstone, K., Ring, S., Pennell, C., et al. (2015). Lack of replication for the myosin-18B association with mathematical ability in independent cohorts. Genes, Brain and Behavior, 14(4), 369–376.CrossRefGoogle Scholar
  41. Pinel, P., & Dehaene, S. (2013). Genetic and environmental contributions to brain activation during calculation. NeuroImage, 81, 306–316.CrossRefGoogle Scholar
  42. Reigosa-Crespo, V., Valdés-Sosa, M., Butterworth, B., Estévez, N., Rodríguez, M., Santos, E., et al. (2012). Basic numerical capacities and prevalence of developmental dyscalculia: The Havana survey. Developmental Psychology, 48, 123–135.  https://doi.org/10.1037/a0025356 CrossRefGoogle Scholar
  43. Sagar, A., Bishop, J. R., Tessman, D. C., Guter, S., Martin, C. L., et al. (2013). Cooccurrence of autism, childhood psychosis, and intellectual disability associated with a de novo 3q29 microdeletion. American Journal of Medical Genetics, A161, 845–849.CrossRefGoogle Scholar
  44. Serra-Juhé, C., Martos-Moreno, G. Á., Bou de Pieri, F., Flores, R., González, J. R., Rodríguez-Santiago, B., et al. (2017). Novel genes involved in severe early-onset obesity revealed by rare copy number and sequence variants. PLoS Genetics, 13(5), e1006657.  https://doi.org/10.1371/journal.pgen.1006657 CrossRefGoogle Scholar
  45. Shalev, R. S., Auerbach, J., & Gross-Tsur, V. (1995). Developmental dyscalculia behavioral and attentional aspects: A research note. Journal of Child Psychology and Psychiatry, 36(7), 1261–1268.CrossRefGoogle Scholar
  46. Shalev, R. S., Manor, O., & Gross-Tsur, V. (2005). Developmental dyscalculia: A prospective six-year follow-up. Developmental Medicine and Child Neurology, 47(2), 121–125.CrossRefGoogle Scholar
  47. Shalev, R. S., Manor, O., Kerem, B., Ayali, M., Badichi, N., Friedlander, Y., & Gross-Tsur, V. (2001). Developmental dyscalculia is a familial learning disability. Journal of Learning Disabilities, 34(1), 59–65.CrossRefGoogle Scholar
  48. Stefansson, H., Meyer-Lindenberg, A., Steinberg, S., Magnusdottir, B., Morgen, K., Arnarsdottir, S., et al. (2014). CNVs conferring risk of autism or schizophrenia affect cognition in controls. Nature, 505(7483), 361–366.CrossRefGoogle Scholar
  49. Sturman, L. (2015). What is there to learn from international surveys in mathematical achievement. In R. Kadosh & A. C. Dowker (Eds.), Oxford handbook of numerical cognition. Oxford: Oxford University Press.  https://doi.org/10.1093/oxfordhb/9780199642342.013.024 CrossRefGoogle Scholar
  50. Szklarczyk, A., Ewaleifoh, O., Beique, J. C., Wang, Y., Knorr, D., Haughey, N., et al. (2008, Nov). MMP-7 cleaves the NR1 NMDA receptor subunit and modifies NMDA receptor function. The FASEB Journal, 22(11), 3757–3767.  https://doi.org/10.1096/fj.07-101402 CrossRefGoogle Scholar
  51. Tammimies, K., Bieder, A., Lauter, G., Sugiaman-Trapman, D., Torchet, R., Hokkanen, M.-E., et al. (2016). Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by regulatory factor X (RFX) transcription factors through X-box promoter motifs. The FASEB Journal, 30(10), 3578–3587.  https://doi.org/10.1096/fj.201500124RR CrossRefGoogle Scholar
  52. Tarkar, A., Loges, N. T., Slagle, C. E., Francis, R., Dougherty, G. W., Tamayo, J. V., et al. (2013). DYX1C1 is required for axonemal dynein assembly and ciliary motility. Nature Genetics, 45(9), 995–1003.  https://doi.org/10.1038/ng.2707 CrossRefGoogle Scholar
  53. Trulioff, A., Ermakov, A., & Malashichev, Y. (2017). Primary cilia as a possible link between left-right asymmetry and neurodevelopmental diseases. Genes, 8(2), 48.  https://doi.org/10.3390/genes8020048 CrossRefGoogle Scholar
  54. Turkheimer, E., Haley, A., Waldron, M., d'Onofrio, B., & Gottesman, I. I. (2003). Socioeconomic status modifies heritability of IQ in young children. Psychological Science, 14(6), 623–628.CrossRefGoogle Scholar
  55. Ulfarsson, M. O., Walters, G. B., Gustafsson, O., Steinberg, S., Silva, A., Doyle, O. M., et al. (2017). 15q11. 2 CNV affects cognitive, structural and functional correlates of dyslexia and dyscalculia. Translational Psychiatry, 7(4), e1109.  https://doi.org/10.1038/tp.2017.77 CrossRefGoogle Scholar
  56. Willatt, L., Cox, J., Barber, J., Cabanas, E. D., Collins, A., et al. (2005). 3q29 microdeletion syndrome: Clinical and molecular characterization of a new syndrome. American Journal of Human Genetics, 77, 154–160.CrossRefGoogle Scholar
  57. Wilson, A. J., & Dehaene, S. (2007). Number sense and developmental dyscalculia. In D. Coch, G. Dawson, & K. Fischer (Eds.), Human behavior, learning and the developing brain: Atypical development (pp. 212–378). New York: Guilford.Google Scholar
  58. Wong, T. T. Y., Ho, C. S., & Tang, J. (2014). Identification of children with mathematics learning disabilities (MLDs) using latent class growth analysis. Research in Developmental Disabilities, 35, 2906–2929.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Maria Raquel S. Carvalho
    • 1
    Email author
  • Vitor Geraldi Haase
    • 2
  1. 1.Departamento de Biologia GeralInstituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG)Belo HorizonteBrazil
  2. 2.Departamento de PsicologiaFaculdade de Filosofia e Ciências Humanas, Universidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations