Advertisement

Mathematics Learning and Its Difficulties: The Cases of Chile and Uruguay

  • Cristina RodríguezEmail author
  • Ariel Cuadro
  • Carola Ruiz
Chapter

Abstract

The aim of this chapter is to present the developmental situation of Chile and Uruguay in terms of mathematics learning, and the difficulties arising as a result of a deficiency in this subject. We will begin by reviewing the available performance statistics for mathematics provided by a number of international studies. Both countries present similar levels of performance and are subject to the mediating effects of socio-economic and gender variables, as will be covered in the coming sections. The segregation factor present in the two countries makes students with specific learning difficulties more vulnerable, and each country manifests differing levels of development in terms of the presence of education policies that respond effectively to these groups. Chile has subscribed to the new diagnosis and intervention trends of preventive models, however there are still some obstacles to their successful application in the field of school education. Uruguay, in turn, is striving towards a solution to the problem of education and presenting some promising initiatives. To a certain degree, the status of school education is an indication of the level of advancement in research. Studies are still few and far between given this early stage of change, however the signs point to exponential growth within a few years, as we will see in this chapter.

Keywords

Socio-economic status Mathematics achievement, specific learning difficulties in mathematics Mathematics learning disabilities, learning disabilities 

References

  1. Administración Nacional de Educación Pública. (2008). Programa de Educación Inicial y Primaria. Uruguay: AutorGoogle Scholar
  2. Al Otaiba, S., Wagner, R. K., & Miller, B. (2014). “Waiting to fail” Redux. Learning Disability Quarterly, 37(3), 129–133.  https://doi.org/10.1177/0731948714525622 CrossRefGoogle Scholar
  3. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: American Psychiatric Publishing.CrossRefGoogle Scholar
  4. ANEP-CEP-ASSE-INAU-MIDES-INFAMILIA. (2008). Proyecto Inter-In. Atención intersectorial e interdisciplinaria para el desarrollo y el aprendizaje, la promoción de derechos y el fortalecimiento de las instituciones educativas. Montevideo. Recuperado el 8 de Julio de 2017, desde www.ceip.edu.uy/documentos/2014/ped//proyecto_interin.pdf
  5. Balbi, A., Ruiz, C., & García, P. (2017). ¿Hay diferencias en la habilidad del docente para identificar dificultades en cálculo y en lectura? Revista Neuropsicología Latinoamericana, 9(1), 47–55.Google Scholar
  6. Bravo, L., Cuadro, A., Mejía, L., & Eslava, J. (2009) Trastornos del Aprendizaje: Investigaciones psicológicas y psicopedagógicas en diversos países de Sud América, Ciencias Psicológics, III(2), 203–218.Google Scholar
  7. Bravo Sanzana, M., Salvo Garrido, S., & Muñoz Poblete, C. (2015). Profiles of Chilean students according to academic performance in mathematics: An exploratory study using classification trees and random forests. Studies in Educational Evaluation, 44, 50–59.  https://doi.org/10.1016/j.stueduc.2015.01.002 CrossRefGoogle Scholar
  8. Butterworth, B. (2002). Screening for dyscalculia: A new approach. Paper Presented at the Mathematical Difficulties: Psychology, Neuroscience, and Interventions Conference. England, UK: Oxford. Available: www.mathematicalbrain.com/pdf/
  9. Butterworth, B., Varma, S., & Laurillard, D. (2011). Dyscalculia: From brain to education. Science, 332(6033), 1049–1053.  https://doi.org/10.1126/science.1201536 CrossRefGoogle Scholar
  10. Centro de Investigación Básica en Psicología. (n.d.). Cognición Numérica. Recuperado el 10 de Julio de 2017, desde. http://cibpsi.psico.edu.uy/es/investigacion/lineas-de-investigacion/cognici%C3%B3n-num%C3%A9rica
  11. Cerda Etchepare, G., Pérez Wilson, C., Moreno Araya, C., Núñez Risco, K., Quezada Herrera, E., Rebolledo Rojas, J., & Sáez Tisnao, S,.(2012). Adaptación de la versión española del Test de Evaluación Matemática Temprana de Utrecht en Chile. Estudios Pedagógicos, 38(1), 235–253.CrossRefGoogle Scholar
  12. Cerda, G., Pérez, C., Navarro, J. I., Aguilar, M., Casas, J. A., & Aragón, E. (2015). Explanatory model of emotional-cognitive variables in school mathematics performance: A longitudinal study in primary school. Frontiers in Psychology, 6, 1363.  https://doi.org/10.3389/fpsyg.2015.01363 CrossRefGoogle Scholar
  13. Cirino, P., Elias, J., Fuchs, L., Schumacher, R., & Powell, S. (2015). Cognitive and mathematical profiles for different forms of learning difficulties. Journal of Learning Disabilities, 48(2), 156–175.CrossRefGoogle Scholar
  14. Compton, D. L., Fuchs, D., Fuchs, L. S., Bouton, B., Gilbert, J. K., Barquero, L. A., Cho, E., & Crouch, R. C. (2010). Selecting at-risk first-grade readers for early intervention: Eliminating false positives and exploring the promise of a two-stage gated screening process. Journal of Educational Psychology, 102(2), 327–340.  https://doi.org/10.1037/a0018448 CrossRefGoogle Scholar
  15. Consejo de Educación Inicial y Primaria. (2013). La red de escuelas y jardines de infantes inclusivos. Montevideo. Recuperado el 7 de Julio de 2017, desde. http://ceip.edu.uy/educaci%C3%B3n-inclusiva/1647-la-red-de-escuelas-y-jardines-inclusivos
  16. Consejo de Educación Inicial y Primaria. (2016). Nuevos materiales de enseñanza: Cuadernos para hacer matemática. Recuperado el 7 de julio de 2017, desde. http://www.cep.edu.uy/prensa/1720-nuevos-materiales-de-ense%C3%B1anza-cuadernos-para-hacer-matem%C3%A1tica
  17. Crespo, P., Jiménez, J. E., Rodríguez, C., & Baker, D. L. (2018). Differences in Growth Reading Patterns for atrisk Spanish-Monolingual Children as a Function of a Tier 2 Intervention. The Spanish Journal of Psychology, 21(4), 1–16.Google Scholar
  18. De Almeida, M., de Medeiros, M., & Borsel, J. (2013). Avaliação do conhecimento sobre a discalculia entre educadores. Audiology - Communication Research, 18(2), 93–100.CrossRefGoogle Scholar
  19. Decreto 170. (2009, 14, Mayo). Decreto con toma de razón N° 170. Fija normas para determinar los alumnos con necesidades educativas especiales que serán beneficiarios de las subvenciones para educación especial. Santiago.Google Scholar
  20. del Río, M. F., Susperreguy, M. I., Strasser, K., & Salinas, V. (2017). Distinct influences of mothers and fathers on kindergartners’ numeracy performance: The role of math anxiety, home numeracy practices, and numeracy expectations. Early Education and Development, 1–17.  https://doi.org/10.1080/10409289.2017.1331662 CrossRefGoogle Scholar
  21. Flotts, M. P., Manzi, J., Jiménez, D., Abarzúa, A., Cayuman, C., & García, M. J. (2016). Informe de Resultados: tercer estudio regional comparativo explicativo (TERCE) Paris: Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura.Google Scholar
  22. Friz Carrillo, M., Sanhueza Henríquez, S., & Sánchez Bravo, A. (2009). Conocimiento que poseen los estudiantes de pedagogia en dificultades de aprendizaje de las matematicas (DAM). Estudios Pedagógicos, 53(1), 45–62.Google Scholar
  23. Fuchs, L. S., & Fuchs, D. (2007). A model for implementing responsiveness to intervention. Teaching Exceptional Children, 39(5), 14–20. https://sci-hub.tw/10.1177/004005990703900503 CrossRefGoogle Scholar
  24. Gersten, R., Clarke, B., & Mazzocco, M. (2007). Chapter 1: Historical and contemporary perspectives on mathematical learning disabilities. In D. B. Berch & M. M. M. Mazzocco (Eds.), Why is math so hard for some children? The nature and origins of mathematical learning difficulties and disabilities (pp. 7–29). Baltimore: Paul H. Brooks Publishing Company.Google Scholar
  25. González, M., Kittredge, A., Sánchez, I., Fleischer, B., Spelke, E., & Maiche, A. (2016). CARD GAMES: A way to improve math skills through stimulating ANS. Neuro Educação, 8, 34–36.Google Scholar
  26. Good, R. H., Simmons, D. C., & Kame’enui, E. J. (2001). The Importance and Decision-Making Utility of a Continuum of Fluency-Based Indicators of Foundational Reading Skills for Third-Grade High-Stakes Outcomes. Scientific Studies of Reading, 5(3), 257–288. http://sci-hub.tw/10.1207/S1532799XSSR0503_4 CrossRefGoogle Scholar
  27. Hill, D. R., King, S. A., Lemons, C. J., & Partanen, J. N. (2012). Fidelity of Implementation and Instructional Alignment in Response to Intervention Research. Learning Disabilities Research & Practice, 27(3), 116–124. http://sci-hub.tw/10.1111/j.1540-5826.2012.00357.x CrossRefGoogle Scholar
  28. Ho Kheong, F., Ramakrishnan, C., & Choo, M. (2011). Pensar sin Límites. Matemática Método Singapur. Singapore, Singapore: Marshall Cavendish Education.Google Scholar
  29. INEEd. (2015). Habilidades no-cognitivas y desempeños en matemática entre los estudiantes uruguayos evaluados en PISA 2012. INEEd, Montevideo.Google Scholar
  30. INEEd. (2016). Los maestros recientemente egresados. ¿Cuáles son sus perspectivas sobre su formación y la primera etapa de la vida profesional?, INEEd, MontevideoGoogle Scholar
  31. INEEd. (2017). Informe sobre el estado de la educación en Uruguay 2015–2016, INEEd, Montevideo.Google Scholar
  32. Jiménez-Fernández, G. (2016) How can I help my students with learning disabilities in Mathematics? REDIMAT, 5 (1), 56–73.doi:10.4471/redimat.2016.1469.Google Scholar
  33. Kaufmann, L., & von Aster, M. (2012). The diagnosis and management of dyscalculia. Deutsches Ärzteblatt International, 109(45), 767–77; quiz 778. http://sci-hub.tw/10.3238/arztebl.2012.0767
  34. Kuhn, J. T. (2015). Developmental dyscalculia. Neurobiological, cognitive and developmental perspectives. Seitschrift für Psychologie, 223(2), 69–82.CrossRefGoogle Scholar
  35. Landerl, K., & Moll, K. (2010). Comorbidity of learning disorders: Prevalence and familial transmission. Journal of Child Psychology and Psychiatry, 51(3), 287–294.CrossRefGoogle Scholar
  36. Ley General de Educación. (2008). No. 18437. Montevideo. Recuperado el 6 de Julio de 2017, desde http://www.ces.edu.uy/ces/index.php?option=com_content&view=article&id=569%3Aley-no-18437-ley-general-de-educacion-160109&Itemid=78Google Scholar
  37. LLECE. (2014). Primera entrega de resultados TERCE, OREALC/UNESCO, Santiago de Chile.Google Scholar
  38. LLECE. (2015). Informe de resultados Tercer Estudio Regional, Comparativo y Explicativo. Cuadernillo n° 3. Factores asociados. OREALC/UNESCO, Santiago de Chile.Google Scholar
  39. MEC-MIDES. (2017). Protocolo de actuación para la inclusión de las personas con discapacidad en los centros educativos. Montevideo. Recuperado el 6 de Julio de 2017, desde. http://www.mec.gub.uy/innovaportal/file/102366/1/protocolo-de-inclusion.pdf
  40. MINEDUC. (2012a). Diferencias actitudinales entre hombres y mujeres en matemática. Agencia de Calidad de la Educación. Unidad de Análisis de los resultados de la prueba pisa 2012. http://archivos.agenciaeducacion.cl/documentos-web/Papers/2013_12_Diferencias_actitudinales_entre_hombres_y_mujeres_en_matematica_resultados_Prueba_PISA_2012.pdf
  41. MINEDUC. (2012b). Informe nacional resultados chile pisa 2012. Agencia de Calidad de la Educación. http://archivos.agenciaeducacion.cl/Informe_Nacional_Resultados_Chile_PISA_2012.pdf
  42. MINEDUC. (2013a). Crecer en calidad y Equidad. Agencia de Calidad de la Educación. http://www.agenciaeducacion.cl/wp-content/uploads/2013/02/crecer_en_equidad.pdf
  43. MINEDUC. (2013b). “Análisis de la Implementación de los Programas de Integración Escolar (PIE) en Establecimientos que han incorporado Estudiantes con Necesidades Educativas Especiales Transitorias NEET” http://portales.mineduc.cl/usuarios/edu.especial/doc/201402101720120.ResumenEstudioImplementacionPIE2013.pdf
  44. MINEDUC. (2015a). Resultados TIMMS Chile. Estudio internacional de tendencias en Matemática y Ciencias. Agencia de Calidad de la Educación. http://archivos.agenciaeducacion.cl/TIMMS_presentacion_BAJA.pdf
  45. MINEDUC. (2015b). Evolución de las brechas socioeconómicas de rendimiento en pruebas SIMCE. http://www.agenciaeducacion.cl/wpontent/uploads/2016/02/Evolucion_brechas_socioeconomicas_de_rendimiento_en_pruebas_Simce.pdf
  46. MINEDUC. (2016). Resultados Educativos 2016. Agencia de Calidad de la Educación. http://archivos.agenciaeducacion.cl/ResultadosNacionales2016_.pdf
  47. Ministerio De Planificación. (2010). Ley 20422. Establece normas sobre igualdad de oportunidades e Inclusión social de personas con discapacidad [Law 20422. To establish norms on equility of opportunities and social inclusion for people with disabilities]. Santiago de Chile: Ministerio De PlanificaciónGoogle Scholar
  48. Ministerio de Salud Pública. (2012). Derechos de los Usuarios de la Salud. Montevideo, Uruguay: MSP: Montevideo.Google Scholar
  49. Moeller, K., Fischer, U., Cress, U., & Nuerk, H. C. (2012). Diagnostics and intervention in developmental dyscalculia: Current issues and novel perspectives. In Reading, writing, mathematics and the developing brain: Listening to many voices (pp. 233–275). Springer Netherlands.Google Scholar
  50. Mullis, I. V. S., Martin, M. O., Foy, P., & Hooper, M. (2016). TIMSS 2015 international results in mathematics. Retrieved from Boston College, TIMSS & PIRLS International Study Center website: http://timssandpirls.bc.edu/timss2015/international-results/
  51. Murphy, M., Mazzocco, M., Hanich, L., & Early, M. (2007). Cognitive characteristics of children with mathematics learning disability (MLD) vary as a function of the cutoff criterion used to define MLD. Journal of Learning Disabilities, 40(5), 458–478.CrossRefGoogle Scholar
  52. OCDE (2010) PISA 2009 results: What Makes a School Successful?: Resources, Policies and Practices (Volume IV), OCDE, París.Google Scholar
  53. OECD (2010) The High Cost of Low Educational Performance: The Long-Run Economic Impact of Improving Educational Outcomes Paris. Paris: OECD Publishing.Google Scholar
  54. OCDE (2014) PISA 2012 Results: What Students Know and Can Do: Student Performance in Mathematics, Reading and Science (Volume I, Revised edition), OCDE, París.Google Scholar
  55. OECD (2016) PISA 2015 Result (Volume I): Excellence and Equity in Education. Paris: OECD Publishing.Google Scholar
  56. Odick, D., Valle Lisboa, J., Eisinger, R., Gonzalez, M., Maiche, A., & Halberda, J. (2015). Approximate number and approximate time discrimination each correlate with school math abilities in young children. Acta Psychologica, 163, 17–26.  https://doi.org/10.1016/j.actpsy.2015.10.010 CrossRefGoogle Scholar
  57. Peake, C., Jimenez, J. E., Rodriguez, C., Bisschop, E., & Villarroel, R. (2015). Syntactic Awareness and Arithmetic Word Problem Solving in Children With and Without Learning Disabilities. Journal of Learning Disabilities, 48(6), 593–601. http://sci-hub.tw/10.1177/0022219413520183 CrossRefGoogle Scholar
  58. Plan Ceibal. (n.d.). PAM. Plataforma Adaptativa de Matemática. Montevideo. Recuperado el 7 de Julio de 2017, desde http://www.ceibal.edu.uy/es/pam
  59. Rodríguez, C., Baker, D., Sepúlveda, F., & Bizama. (2017). Desarrollo de habilidades lectora y numéricas: dificultades en lectura y matemáticas y su comorbilidad. Paper presented at the Cuarto Congreso Interdisciplinario de Investigación en Educación (CIIE 2017). Chile: ACHIE.Google Scholar
  60. Rodríguez, C., & Jimenez, J. E. (2016). What cognitive and numerical skills best define learning disabilities in mathematics? Estudios de Psicología, 37(1). http://sci-hub.tw/10.1080/02109395.2015.1129825 CrossRefGoogle Scholar
  61. Rosas, R., Tenoria, M., & Garate, R. A. (2010). La Neuropsicología en Chile. Revista Neuropsicología, Neuropsiquiatría y Neurociencias., 9(2), 35–46.Google Scholar
  62. Shin, M., & Bryant, D. (2015). A synthesis of mathematical and cognitive performances of students with mathematics learning disabilities. Journal of Learning Disabilities, 48(1), 96–112.CrossRefGoogle Scholar
  63. Singer, V., & Cuadro, A. (2014). Propiedades psicométricas de una prueba experimental para la evaluación de la eficacia del cálculo aritmético básico. Estudios de Psicología, 35(1), 183–192.CrossRefGoogle Scholar
  64. Singer, V., Cuadro, A., Costa, D., & Von Hagen, A. (2014). Manual Técnico del Test de Eficacia del Cálculo Aritmético. Montevideo, Uruguay: Magro Editores.Google Scholar
  65. Singer, V. y Strasser, K. (2017). The association between arithmetic and reading performance in school: A meta-analytic study. School Psychology Quarterly.  https://doi.org/10.1037/spq0000197.CrossRefGoogle Scholar
  66. Taut, S., Cortés, F., Sebastian, C., & Preiss, D. (2009). Evaluating school and parent reports of the national student achievement testing system (SIMCE) in Chile: Access, comprehension, and use. Evaluation and Program Planning, 32(2), 129–137.  https://doi.org/10.1016/j.evalprogplan.2008.10.004.CrossRefGoogle Scholar
  67. Tran, L., Sanchez, T., Arellano, B., & Lee Swanson, H. (2011). A Meta-Analysis of the RTI Literature for Children at Risk for Reading Disabilities. Journal of Learning Disabilities, 44(3), 283–295.  https://doi.org/10.1177/0022219410378447 CrossRefGoogle Scholar
  68. United Nations Development Programme. (2007). Human development report 2016: Human Development for everyone. New York: United Nations Development Programme (UNDP).Google Scholar
  69. Valle Lisboa, J., Cabana, A., Eisenger, R., Mailhos, A., Luzardo, M., Halberda, J., et al. (2017). Cognitive abilities that mediate the effect of SES on elementary symbolic mathematics learning in the Uruguayan tablet based intervention. Prospects Comparative Journal of Curriculum, Learning, and Assessment, 47(1), 1–15.Google Scholar
  70. Valle-Lisboa, J., Mailhos, A., Eisinger, R., Halberda, J., Gonzalez, M., Luzardo, M., et al. (2015) Estimulación cognitiva a escala poblacional utilizando tabletas. Del sistema numérico aproximado (ANS) a la matemática simbólica. En: Lipina, S., Sigman, M. y Fernández Slezak, D. Pensar las TIC desde la ciencia cognitiva y la neurociencia. Buenos Aires: Gedisa editorial.Google Scholar
  71. VanDerHeyden, A. M., Witt, J. C., & Gilbertson, D. (2007). A multi-year evaluation of the effects of a response to intervention (RTI) model on identification of children for special education. Journal of School Psychology, 45(2), 225–256.  https://doi.org/10.1016/j.jsp.2006.11.004 CrossRefGoogle Scholar
  72. Vukovic, R., & Lesaux, N. (2013). The relationship between linguistic skills and arithmetic knowledge. Learning and Individual Differences, 23(1), 87–91.CrossRefGoogle Scholar
  73. Wadlington, E., & Wadlington, P. (2008). Helping students with mathematical disabilities to succeed. Preventing School Failure, 53(1), 2–7.  https://doi.org/10.3200/PSFL.53.1.2-7 CrossRefGoogle Scholar
  74. Williams, S. P. (2006). Independent Review of Mathematics Teaching in Early Years Settings and Primary Schools. Final report. U.K.: Department for Children, Schools and Families.Google Scholar
  75. Wilson, A. J., Andrewes, S. G., Struthers, H., Rowe, V. M., Bogdanovic, R., & Waldie, K. E. (2015). Dyscalculia and dyslexia in adults: Cognitive bases of comorbidity. Learning and Individual Differences, 37, 118–132. https://sci-hub.tw/10.1016/j.lindif.2014.11.017 CrossRefGoogle Scholar
  76. Wu, S. S., Barth, M., Amin, H., Malcarne, V., & Menon, V. (2012). Math Anxiety in Second and Third Graders and Its Relation to Mathematics Achievement. Frontiers in Psychology, 3, 162. https://sci-hub.tw/10.3389/fpsyg.2012.00162

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Cristina Rodríguez
    • 1
    • 2
    Email author
  • Ariel Cuadro
    • 3
  • Carola Ruiz
    • 4
  1. 1.Department of Developmental and Educational PsychologyUniversidad de La LagunaTenerifeSpain
  2. 2.Universidad Católica de la Santísima ConcepciónConcepciónUruguay
  3. 3.Facultad de PsicologíaUniversidad Católica del UruguayMontevideoUruguay
  4. 4.Departamento de NeurocogniciónUniversidad Católica del UruguayMontevideoUruguay

Personalised recommendations