Advertisement

Breast Cancer

  • Yasemin BolukbasiEmail author
  • Duygu Sezen
  • Yucel Saglam
  • Ugur Selek
Chapter

Abstract

This chapter on breast cancer is aiming to summarize the evidence-based current management for ductal carcinoma in situ, and early & locally advanced stage breast cancers. We hope to ease the understanding in the appropriate delineation of tumor volumes/fields along with site-related case presentations covering diagnostic images, contouring, slice by slice final plan examples; accompanied by up-to-date key literature review.

References

  1. 1.
    Kamińska M, et al. Breast cancer risk factors. Prz Menopauzalny. 2015;14(3):196–202.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Nelson HD, et al. Risk factors for breast Cancer for women age 40 to 49: a systematic review and meta-analysis. Ann Intern Med. 2012;156(9):635–48.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Land CE. Radiation and breast cancer risk. Prog Clin Biol Res. 1997;396:115–24.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Lahham A, ALMasri H, Kameel S. Estimation of female radiation doses and breast Cancer risk from chest Ct examinations. Radiat Prot Dosimetry. 2017;179:303–9.CrossRefGoogle Scholar
  5. 5.
    U.S. Preventive Services Task Force. Risk assessment, genetic counseling, and genetic testing for brca-related cancer in women: recommendation statement. Am Fam Physician. 2015;91(2):118A–E.Google Scholar
  6. 6.
    Lax SF. Hereditary breast and ovarian cancer. Pathologe. 2017;38(3):149–55.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Rebbeck TR, Kauff ND, Domchek SM. Meta-analysis of risk reduction estimates associated with risk-reducing salpingo-oophorectomy in BRCA1 or BRCA2 mutation carriers. J Natl Cancer Inst. 2009;101(2):80–7.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Schenberg T, et al. MRI screening for breast cancer in women at high risk; is the Australian breast MRI screening access program addressing the needs of women at high risk of breast cancer? J Med Radiat Sci. 2015;62(3):212–25.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Saslow D, et al. American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin. 2007;57(2):75–89.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Page DL, Rogers LW. Combined histologic and cytologic criteria for the diagnosis of mammary atypical ductal hyperplasia. Hum Pathol. 1992;23(10):1095–7.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Silverstein MJ, et al. Prognostic classification of breast ductal carcinoma-in-situ. Lancet. 1995;345(8958):1154–7.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Solin LJ, et al. A multigene expression assay to predict local recurrence risk for ductal carcinoma in situ of the breast. J Natl Cancer Inst. 2013;105(10):701–10.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Rudloff U, et al. Nomogram for predicting the risk of local recurrence after breast-conserving surgery for ductal carcinoma in situ. J Clin Oncol. 2010;28(23):3762–9.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Giuliano AE, Edge SB, Hortobagyi GN. Eighth edition of the AJCC Cancer staging manual: breast cancer. Ann Surg Oncol. 2018;25(7):1783–5.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Gradishar WJ, et al. Breast cancer, version 4.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2018;16(3):310–20.CrossRefGoogle Scholar
  16. 16.
    Tunon-De-Lara C, et al. Analysis of 676 cases of ductal carcinoma in situ of the breast from 1971 to 1995: diagnosis and treatment—the experience of one institute. Am J Clin Oncol. 2001;24(6):531–6.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Vargas C, et al. Factors associated with local recurrence and cause-specific survival in patients with ductal carcinoma in situ of the breast treated with breast-conserving therapy or mastectomy. Int J Radiat Oncol Biol Phys. 2005;63(5):1514–21.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Hassett MJ, et al. Treating second breast events after breast-conserving surgery for ductal carcinoma in situ. J Natl Compr Cancer Netw. 2018;16(4):387–94.CrossRefGoogle Scholar
  19. 19.
    Frank S, et al. Ductal carcinoma in situ (DCIS) treated by mastectomy, or local excision with or without radiotherapy: a monocentric, retrospective study of 608 women. Breast. 2016;25:51–6.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    EORTC Breast Cancer Cooperative Group, et al. Breast-conserving treatment with or without radiotherapy in ductal carcinoma-in-situ: ten-year results of European Organisation for Research and Treatment of Cancer randomized phase III trial 10853—a study by the EORTC Breast Cancer Cooperative Group and EORTC Radiotherapy Group. J Clin Oncol. 2006;24(21):3381–7.CrossRefGoogle Scholar
  21. 21.
    Wapnir IL, et al. Long-term outcomes of invasive ipsilateral breast tumor recurrences after lumpectomy in NSABP B-17 and B-24 randomized clinical trials for DCIS. J Natl Cancer Inst. 2011;103(6):478–88.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Cuzick J, et al. Effect of tamoxifen and radiotherapy in women with locally excised ductal carcinoma in situ: long-term results from the UK/ANZ DCIS trial. Lancet Oncol. 2011;12(1):21–9.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Warnberg F, et al. Effect of radiotherapy after breast-conserving surgery for ductal carcinoma in situ: 20 years follow-up in the randomized SweDCIS trial. J Clin Oncol. 2014;32(32):3613–8.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Goodwin A, et al. Post-operative radiotherapy for ductal carcinoma in situ of the breast. Cochrane Database Syst Rev. 2013;11:CD000563.Google Scholar
  25. 25.
    McCormick B, et al. RTOG 9804: a prospective randomized trial for good-risk ductal carcinoma in situ comparing radiotherapy with observation. J Clin Oncol. 2015;33(7):709–15.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Allred DC, et al. Adjuvant tamoxifen reduces subsequent breast cancer in women with estrogen receptor-positive ductal carcinoma in situ: a study based on NSABP protocol B-24. J Clin Oncol. 2012;30(12):1268–73.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Lazzeroni M, et al. Adjuvant therapy in patients with ductal carcinoma in situ of the breast: the Pandora's box. Cancer Treat Rev. 2017;55:1–9.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Omlin A, et al. Boost radiotherapy in young women with ductal carcinoma in situ: a multicentre, retrospective study of the rare cancer network. Lancet Oncol. 2006;7(8):652–6.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Wong P, et al. Ductal carcinoma in situ—the influence of the radiotherapy boost on local control. Int J Radiat Oncol Biol Phys. 2012;82(2):e153–8.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Morrow M, et al. Society of Surgical Oncology-American Society for Radiation Oncology-American Society of Clinical Oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in ductal carcinoma in situ. Pract Radiat Oncol. 2016;6(5):287–95.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Oar AJ, et al. Hypofractionated versus conventionally fractionated radiotherapy for ductal carcinoma in situ (DCIS) of the breast. J Med Imaging Radiat Oncol. 2016;60(3):407–13.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Williamson D, et al. Local control with conventional and hypofractionated adjuvant radiotherapy after breast-conserving surgery for ductal carcinoma in-situ. Radiother Oncol. 2010;95(3):317–20.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Hathout L, et al. Hypofractionated radiation therapy for breast ductal carcinoma in situ. Int J Radiat Oncol Biol Phys. 2013;87(5):1058–63.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Nilsson C, Valachis A. The role of boost and hypofractionation as adjuvant radiotherapy in patients with DCIS: a meta-analysis of observational studies. Radiother Oncol. 2015;114(1):50–5.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Berliner JL, et al. NSGC practice guideline: risk assessment and genetic counseling for hereditary breast and ovarian Cancer. J Genet Couns. 2013;22(2):155–63.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Wellings E. Breast cancer screening for high-risk patients of different ages and risk—which modality is most effective? Cureus. 2016;8(12):e945.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Dowsett M, et al. Comparison of PAM50 risk of recurrence score with oncotype DX and IHC4 for predicting risk of distant recurrence after endocrine therapy. J Clin Oncol. 2013;31(22):2783–90.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Penault-Llorca F, et al. The 21-gene recurrence score(R) assay predicts distant recurrence in lymph node-positive, hormone receptor-positive, breast cancer patients treated with adjuvant sequential epirubicin- and docetaxel-based or epirubicin-based chemotherapy (PACS-01 trial). BMC Cancer. 2018;18(1):526.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Beumer IJ, et al. Prognostic value of MammaPrint(®) in invasive lobular breast Cancer. Biomark Insights. 2016;11:139–46.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Cuadros M, Llanos A. Validation and clinical application of MammaPrint(R) in patients with breast cancer. Med Clin (Barc). 2011;136(14):627–32.CrossRefGoogle Scholar
  41. 41.
    Aggarwal S, et al. Practical consensus recommendations on management of HR + ve early breast cancer with specific reference to genomic profiling. South Asian J Cancer. 2018;7(2):96–101.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Cserni G, et al. The new TNM-based staging of breast cancer. Virchows Arch. 2018;472(5):697–703.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Early Breast Cancer Trialists' Collaborative Group, et al. Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet. 2011;378(9804):1707–16.CrossRefGoogle Scholar
  44. 44.
    Veronesi U, et al. Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N Engl J Med. 2002;347(16):1227–32.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Fisher B, et al. Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med. 2002;347(16):1233–41.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Louis-Sylvestre C, et al. Axillary treatment in conservative management of operable breast cancer: dissection or radiotherapy? Results of a randomized study with 15 years of follow-up. J Clin Oncol. 2004;22(1):97–101.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Krag DN, et al. Sentinel-lymph-node resection compared with conventional axillary-lymph-node dissection in clinically node-negative patients with breast cancer: overall survival findings from the NSABP B-32 randomised phase 3 trial. Lancet Oncol. 2010;11(10):927–33.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Jagsi R, et al. Radiation field design in the ACOSOG Z0011 (alliance) trial. J Clin Oncol. 2014;32(32):3600–6.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Donker M, et al. Radiotherapy or surgery of the axilla after a positive sentinel node in breast cancer (EORTC 10981-22023 AMAROS): a randomised, multicentre, open-label, phase 3 non-inferiority trial. Lancet Oncol. 2014;15(12):1303–10.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Savolt A, et al. Eight-year follow up result of the OTOASOR trial: the optimal treatment of the axilla - surgery or radiotherapy after positive sentinel lymph node biopsy in early-stage breast cancer: a randomized, single Centre, phase III, non-inferiority trial. Eur J Surg Oncol. 2017;43(4):672–9.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Savolt A, et al. Does the result of completion axillary lymph node dissection influence the recommendation for adjuvant treatment in sentinel lymph node-positive patients? Clin Breast Cancer. 2013;13(5):364–70.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Haviland JS, et al. The UK standardisation of breast radiotherapy (START) trials of radiotherapy hypofractionation for treatment of early breast cancer: 10-year follow-up results of two randomised controlled trials. Lancet Oncol. 2013;14(11):1086–94.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Whelan TJ, et al. Long-term results of hypofractionated radiation therapy for breast cancer. N Engl J Med. 2010;362(6):513–20.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Owen JR, et al. Effect of radiotherapy fraction size on tumour control in patients with early-stage breast cancer after local tumour excision: long-term results of a randomised trial. Lancet Oncol. 2006;7(6):467–71.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Smith BD, et al. Radiation therapy for the whole breast: executive summary of an American Society for Radiation Oncology (ASTRO) evidence-based guideline. Pract Radiat Oncol. 2018;8(3):145–52.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Bartelink H, et al. Impact of a higher radiation dose on local control and survival in breast-conserving therapy of early breast cancer: 10-year results of the randomized boost versus no boost EORTC 22881-10882 trial. J Clin Oncol. 2007;25(22):3259–65.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Romestaing P, et al. Role of a 10-Gy boost in the conservative treatment of early breast cancer: results of a randomized clinical trial in Lyon, France. J Clin Oncol. 1997;15(3):963–8.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Chen GP, et al. A planning comparison of 7 irradiation options allowed in RTOG 1005 for early-stage breast cancer. Med Dosim. 2015;40(1):21–5.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Tsang Y, et al. Clinical impact of IMPORT HIGH trial (CRUK/06/003) on breast radiotherapy practices in the United Kingdom. Br J Radiol. 2015;88(1056):20150453.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Coles CE, et al. Partial-breast radiotherapy after breast conservation surgery for patients with early breast cancer (UK IMPORT LOW trial): 5-year results from a multicentre, randomised, controlled, phase 3, non-inferiority trial. Lancet. 2017;390(10099):1048–60.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Strnad V, et al. 5-year results of accelerated partial breast irradiation using sole interstitial multicatheter brachytherapy versus whole-breast irradiation with boost after breast-conserving surgery for low-risk invasive and in-situ carcinoma of the female breast: a randomised, phase 3, non-inferiority trial. Lancet. 2016;387(10015):229–38.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Polgar C, et al. Breast-conserving therapy with partial or whole breast irradiation: ten-year results of the Budapest randomized trial. Radiother Oncol. 2013;108(2):197–202.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    NSABP B-39, RTOG 0413: a randomized phase III study of conventional whole breast irradiation versus partial breast irradiation for women with stage 0, I, or II breast cancer. Clin Adv Hematol Oncol. 2006;4(10):719–21.Google Scholar
  64. 64.
    Veronesi U, et al. Intraoperative radiotherapy versus external radiotherapy for early breast cancer (ELIOT): a randomised controlled equivalence trial. Lancet Oncol. 2013;14(13):1269–77.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Vaidya JS, et al. Risk-adapted targeted intraoperative radiotherapy versus whole-breast radiotherapy for breast cancer: 5-year results for local control and overall survival from the TARGIT-A randomised trial. Lancet. 2014;383(9917):603–13.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Hughes KS, et al. Lumpectomy plus tamoxifen with or without irradiation in women age 70 years or older with early breast cancer: long-term follow-up of CALGB 9343. J Clin Oncol. 2013;31(19):2382–7.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Kunkler IH, et al. Breast-conserving surgery with or without irradiation in women aged 65 years or older with early breast cancer (PRIME II): a randomised controlled trial. Lancet Oncol. 2015;16(3):266–73.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Potter R, et al. Lumpectomy plus tamoxifen or anastrozole with or without whole breast irradiation in women with favorable early breast cancer. Int J Radiat Oncol Biol Phys. 2007;68(2):334–40.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Blamey RW, et al. Radiotherapy or tamoxifen after conserving surgery for breast cancers of excellent prognosis: British Association of Surgical Oncology (BASO) II trial. Eur J Cancer. 2013;49(10):2294–302.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Buzdar AU. ‘Arimidex’ (anastrozole) versus tamoxifen as adjuvant therapy in postmenopausal women with early breast cancer—efficacy overview. J Steroid Biochem Mol Biol. 2003;86(3–5):399–403.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Bellon JR, et al. Sequencing of chemotherapy and radiation therapy in early-stage breast cancer: updated results of a prospective randomized trial. J Clin Oncol. 2005;23(9):1934–40.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Narod SA, Iqbal J, Miller AB. Why have breast cancer mortality rates declined? J Cancer Policy. 2015;5:8–17.CrossRefGoogle Scholar
  73. 73.
    Rajan S, et al. Multidisciplinary decisions in breast cancer: does the patient receive what the team has recommended? Br J Cancer. 2013;108(12):2442–7.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Chapman CH, Jagsi R. Postmastectomy radiotherapy after Neoadjuvant chemotherapy: a review of the evidence. Oncology (Williston Park). 2015;29(9):657–66.Google Scholar
  75. 75.
    Rastogi P, et al. Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and bowel project protocols B-18 and B-27. J Clin Oncol. 2008;26(5):778–85.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Haddad TC, Goetz MP. Landscape of neoadjuvant therapy for breast cancer. Ann Surg Oncol. 2015;22(5):1408–15.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Teshome M, Hunt KK. Neoadjuvant therapy in the treatment of breast cancer. Surg Oncol Clin N Am. 2014;23(3):505–23.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Cuzick J, et al. Overview of randomized trials of postoperative adjuvant radiotherapy in breast cancer. Cancer Treat Rep. 1987;71(1):15–29.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Clarke M, et al. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;366(9503):2087–106.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Van de Steene J, Soete G, Storme G. Adjuvant radiotherapy for breast cancer significantly improves overall survival: the missing link. Radiother Oncol. 2000;55(3):263–72.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Whelan TJ, et al. Does locoregional radiation therapy improve survival in breast cancer? A meta-analysis. J Clin Oncol. 2000;18(6):1220–9.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Overgaard M, et al. Evaluation of radiotherapy in high-risk breast cancer patients: report from the Danish breast Cancer cooperative group (DBCG 82) trial. Int J Radiat Oncol Biol Phys. 1990;19(i):1121–4.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Overgaard M, Nielsen HM, Overgaard J. Is the benefit of postmastectomy irradiation limited to patients with four or more positive nodes, as recommended in international consensus reports? A subgroup analysis of the DBCG 82 b&c randomized trials. Radiother Oncol. 2007;82(3):247–53.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Ragaz J, et al. Locoregional radiation therapy in patients with high-risk breast cancer receiving adjuvant chemotherapy: 20-year results of the British Columbia randomized trial. J Natl Cancer Inst. 2005;97(2):116–26.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Recht A, et al. Postmastectomy radiotherapy: an American Society of Clinical Oncology, American Society for Radiation Oncology, and Society of Surgical Oncology focused guideline update. Ann Surg Oncol. 2017;24(1):38–51.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Thomas JS, et al. The BIG 2.04 MRC/EORTC SUPREMO trial: pathology quality assurance of a large phase 3 randomised international clinical trial of postmastectomy radiotherapy in intermediate-risk breast cancer. Breast Cancer Res Treat. 2017;163(1):63–9.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Huang EH, et al. Postmastectomy radiation improves local-regional control and survival for selected patients with locally advanced breast cancer treated with neoadjuvant chemotherapy and mastectomy. J Clin Oncol. 2004;22(23):4691–9.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    McGuire SE, et al. Postmastectomy radiation improves the outcome of patients with locally advanced breast cancer who achieve a pathologic complete response to neoadjuvant chemotherapy. Int J Radiat Oncol Biol Phys. 2007;68(4):1004–9.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Buchholz TA, et al. Predictors of local-regional recurrence after Neoadjuvant chemotherapy and mastectomy without radiation. J Clin Oncol. 2002;20(1):17–23.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Whelan TJ, et al. Regional nodal irradiation in early-stage breast cancer. N Engl J Med. 2015;373(4):307–16.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Poortmans PM, et al. Internal mammary and medial supraclavicular irradiation in breast cancer. N Engl J Med. 2015;373(4):317–27.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Moreno AC, Shaitelman SF, Buchholz TA. A clinical perspective on regional nodal irradiation for breast cancer. Breast. 2017;34(Suppl 1):S85–s90.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Budach W, et al. Adjuvant radiotherapy of regional lymph nodes in breast cancer—a meta-analysis of randomized trials. Radiat Oncol. 2013;8:267.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Darby SC, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368(11):987–98.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Bolukbasi Y, et al. Reproducible deep-inspiration breath-hold irradiation with forward intensity-modulated radiotherapy for left-sided breast cancer significantly reduces cardiac radiation exposure compared to inverse intensity-modulated radiotherapy. Tumori. 2014;100(2):169–78.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Nissen HD, Appelt AL. Improved heart, lung and target dose with deep inspiration breath hold in a large clinical series of breast cancer patients. Radiother Oncol. 2013;106(1):28–32.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Essers M, et al. Should breathing adapted radiotherapy also be applied for right-sided breast irradiation? Acta Oncol. 2016;55(4):460–5.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Bartlett FR, et al. The UK HeartSpare study (stage II): multicentre evaluation of a voluntary breath-hold technique in patients receiving breast radiotherapy. Clin Oncol (R Coll Radiol). 2017;29(3):e51–6.CrossRefGoogle Scholar
  99. 99.
    NCCN guideline/breast cancer. 2018. Last accessed May 2018.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yasemin Bolukbasi
    • 1
    • 2
    Email author
  • Duygu Sezen
    • 3
  • Yucel Saglam
    • 3
  • Ugur Selek
    • 1
    • 2
  1. 1.Department of Radiation Oncology, Faculty of MedicineKoç UniversityIstanbulTurkey
  2. 2.Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonUSA
  3. 3.Department of Radiation Oncology, School of MedicineKoç UniversityIstanbulTurkey

Personalised recommendations