Advertisement

MERIC and RADAR Generator: Tools for Energy Evaluation and Runtime Tuning of HPC Applications

  • Ondrej Vysocky
  • Martin Beseda
  • Lubomír Říha
  • Jan Zapletal
  • Michael Lysaght
  • Venkatesh Kannan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11087)

Abstract

This paper introduces two tools for manual energy evaluation and runtime tuning developed at IT4Innovations in the READEX project. The MERIC library can be used for manual instrumentation and analysis of any application from the energy and time consumption point of view. Besides tracing, MERIC can also change environment and hardware parameters during the application runtime, which leads to energy savings.

MERIC stores large amounts of data, which are difficult to read by a human. The RADAR generator analyses the MERIC output files to find the best settings of evaluated parameters for each instrumented region. It generates a Open image in new window report and a MERIC configuration file for application production runs.

Keywords

READEX MERIC RADAR Energy efficient computing HDEEM RAPL 

Notes

Acknowledgement

This work was supported by The Ministry of Education, Youth and Sports from the National Programme of Sustainability (NPU II) project “IT4Innovations excellence in science - LQ1602” and by the IT4Innovations infrastructure which is supported from the Large Infrastructures for Research, Experimental Development and Innovations project “IT4Innovations National Supercomputing Center – LM2015070”.

The research leading to these results has received funding from the European Union’s Horizon 2020 Programme under grant agreement number 671657.

The work was additionally supported by VŠB – Technical University of Ostrava under the grant SP2017/165 and by the Barcelona Supercomputing Center under the grants 288777, 610402 and 671697.

References

  1. 1.
    Allinea MAP - C/C++ profiler and Fortran profiler for high performance Linux code. https://www.allinea.com/products/map
  2. 2.
    High definition energy efficiency monitoring. http://www.ena-hpc.org/2014/pdf/bull.pdf
  3. 3.
  4. 4.
  5. 5.
    Dostal, Z., Horak, D., Kucera, R.: Total FETI-an easier implementable variant of the FETI method for numerical solution of elliptic PDE. Commun. Numer. Methods Eng. 22(12), 1155–1162 (2006).  https://doi.org/10.1002/cnm.881MathSciNetCrossRefGoogle Scholar
  6. 6.
    Eastep, J., et al.: Global extensible open power manager: a vehicle for HPC community collaboration on co-designed energy management solutions. In: Kunkel, J.M., Yokota, R., Balaji, P., Keyes, D. (eds.) ISC 2017. LNCS, vol. 10266, pp. 394–412. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58667-0_21CrossRefGoogle Scholar
  7. 7.
    eLinux.org: Jetson/TX1 controlling performance. http://elinux.org/Jetson/TX1_Controlling_Performance
  8. 8.
    Hackenberg, D., Ilsche, T., Schuchart, J., Schöne, R., Nagel, W., Simon, M., Georgiou, Y.: HDEEM: high definition energy efficiency monitoring. In: Energy Efficient Supercomputing Workshop (E2SC), November 2014Google Scholar
  9. 9.
    Hackenberg, D., Schöne, R., Ilsche, T., Molka, D., Schuchart, J., Geyer, R.: An energy efficiency feature survey of the Intel Haswell processor. In: 2015 IEEE International Parallel and Distributed Processing Symposium Workshop (IPDPSW), May 2015Google Scholar
  10. 10.
    Hähnel, M., Döbel, B., Völp, M., Härtig, H.: Measuring energy consumption for short code paths using rapl. SIGMETRICS Perform. Eval. Rev. 40(3), 13–17 (2012). http://doi.acm.org/10.1145/2425248.2425252CrossRefGoogle Scholar
  11. 11.
    Haidar, A., Jagode, H., Vaccaro, P., YarKhan, A., Tomov, S., Dongarra, J.: Investigating power capping toward energy-efficient scientific applications. Concurr. Comput.: Pract. Exp. e4485. https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4485
  12. 12.
  13. 13.
    Oleynik, Y., Gerndt, M., Schuchart, J., Kjeldsberg, P.G., Nagel, W.E.: Run-time exploitation of application dynamism for energy-efficient exascale computing (READEX). In: Plessl, C., El Baz, D., Cong, G., Cardoso, J.M.P., Veiga, L., Rauber, T. (eds.) 2015 IEEE 18th International Conference on Computational Science and Engineering (CSE), pp. 347–350. IEEE, Piscataway, October 2015Google Scholar
  14. 14.
    Rajovic, N., Rico, A., Mantovani, F., Ruiz, D., Vilarrubi, J.O., Gomez, C., Backes, L., Nieto, D., Servat, H., Martorell, X., Labarta, J., Ayguade, E., Adeniyi-Jones, C., Derradji, S., Gloaguen, H., Lanucara, P., Sanna, N., Mehaut, J.F., Pouget, K., Videau, B., Boyer, E., Allalen, M., Auweter, A., Brayford, D., Tafani, D., Weinberg, V., Brömmel, D., Halver, R., Meinke, J.H., Beivide, R., Benito, M., Vallejo, E., Valero, M., Ramirez, A.: The mont-blanc prototype: an alternative approach for HPC systems. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2016, pp. 38:1–38:12. IEEE Press, Piscataway (2016). http://dl.acm.org/citation.cfm?id=3014904.3014955
  15. 15.
    Riha, L., Brzobohaty, T., Markopoulos, A., Jarosova, M., Kozubek, T., Horak, D., Hapla, V.: Implementation of the efficient communication layer for the highly parallel total feti and hybrid total feti solvers. Parallel Comput. 57, 154–166 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Rountree, B., Lowenthal, D.K., de Supinski, B.R., Schulz, M., Freeh, V.W., Bletsch, T.K.: Adagio: making DVS practical for complex HPC applications. In: ICS (2009)Google Scholar
  17. 17.
  18. 18.
    Schuchart, J., Gerndt, M., Kjeldsberg, P.G., Lysaght, M., Horák, D., Říha, L., Gocht, A., Sourouri, M., Kumaraswamy, M., Chowdhury, A., Jahre, M., Diethelm, K., Bouizi, O., Mian, U.S., Kružík, J., Sojka, R., Beseda, M., Kannan, V., Bendifallah, Z., Hackenberg, D., Nagel, W.E.: The READEX formalism for automatic tuning for energy efficiency. Computing 1–19 (2017).  https://doi.org/10.1007/s00607-016-0532-7
  19. 19.
    Venkatesh, K., Lubomir, R., Michael, G., Anamika, C., Ondrej, V., Martin, B., David, H., Radim, S., Jakub, K., Michael, L.: Prace whitepaper: investigating and exploiting application dynamism for energy-efficient exascale computing (2017). www.prace-ri.eu
  20. 20.
    VI-HPS: Score-p user manual 3.1 (2017)Google Scholar
  21. 21.
    Vysocky, O., Beseda, M., Riha, L., Zapletal, J., Nikl, V., Lysaght, M., Kannan, V.: Evaluation of the HPC applications dynamic behavior in terms of energy consumption. In: Proceedings of the Fifth International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering. Civil-Comp Press, Stirlingshire, Paper 3 (2017)Google Scholar
  22. 22.
    Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual performance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009).  https://doi.org/10.1145/1498765.1498785CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ondrej Vysocky
    • 1
  • Martin Beseda
    • 1
  • Lubomír Říha
    • 1
  • Jan Zapletal
    • 1
  • Michael Lysaght
    • 2
  • Venkatesh Kannan
    • 2
  1. 1.IT4Innovations National Supercomputing CenterVŠB-Technical University of OstravaOstravaCzech Republic
  2. 2.Irish Centre for High End ComputingDublinIreland

Personalised recommendations