Advertisement

Peptide Synthesis Using Proteases as Catalyst

  • Sonia Barberis
  • Mauricio Adaro
  • Anabella Origone
  • Grisel Bersi
  • Fanny Guzmán
  • Andrés Illanes
Chapter

Abstract

Proteolytic enzymes (proteases) comprise a group of hydrolases (EC 3.4, NC-IUBMB) which share the common feature of acting on peptide bonds. Proteases are among the best-studied enzymes in terms of structure–function relationship (Krowarsch et al. 2005). Proteases, by catalyzing the cleavage of other proteins and even themselves, have an enormous physiological significance, their coding genes representing as much as 2% of the total human genome (Schilling and Overall 2008).

Keywords

Bioactive peptides Therapeutic peptides Peptide vaccines cosmetic peptides Drugs carriers Nutritional peptides 

References

  1. Abbott AP, Harris RC, Ryder KS, Agostino CD, Gladden LF, Mantle MD (2011) Glycerol eutectics as sustainable solvente systems. Green Chem 13:82–90CrossRefGoogle Scholar
  2. Abe Y, Kude K, Hayase S, Kawatsura M, Tsunashima K, Itoh T (2008) Design of phosphonium ionic liquids for lipase-catalyzed transesterification. J Mol Catal B Enzym 51:81–85CrossRefGoogle Scholar
  3. Abraham T, Joseph J, Bindhu L, Jayakumar K (2004) Cross-linked enzyme crystals of glucoamylase as a potent catalyst for biotransformation. Carbohydr Res 339(6):1099–1104CrossRefPubMedGoogle Scholar
  4. Agyei D, Danquah MK (2011) Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. Biotechnol Adv 29:272–277CrossRefPubMedGoogle Scholar
  5. Agyei D, Shanbhag BKL (2015) Enzyme engineering (immobilization) for food applications. In: Yada R (ed) Improving and tailoring enzymes for food quality and functionality. Elsevier, Cambridge, pp 213–235CrossRefGoogle Scholar
  6. Ahmad R, Sardar M (2015) Enzyme immobilization: an overview on nanoparticles as immobilization matrix. Biochem Anal Biochem 4(2):8.  https://doi.org/10.4172/2161-1009.1000178.CrossRefGoogle Scholar
  7. Ahn JM, Boyl NA, Macdonald MT, Jan KD (2002) Peptidomimetics and peptide backbone modifications. Mini Rev Med Chem 2:463–473CrossRefPubMedGoogle Scholar
  8. Ahrenberg M, Brinckmann M, Schmelzer JWP, Beck W, Schmidt C, Kebler O, Kragl U, Verevkin PV, Schick C (2014) Determination of volatility of ionic liquids at the nanoscale by means of ultra-fast scanning calorimetry. Phys Chem Chem Phys 16:2971–2980CrossRefPubMedGoogle Scholar
  9. Albericio F (2000) Orthogonal protecting groups for Nα-amino and C-terminal carboxyl functions in solid-phase synthesis. Biopolymers 55:123–139CrossRefPubMedGoogle Scholar
  10. Albericio F, Kruger HG (2012) Therapeutic peptides. Future Med Chem 4:1527–1531CrossRefPubMedGoogle Scholar
  11. Almeida A, Souto E (2007) Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Deliv Rev 59:478–490CrossRefPubMedGoogle Scholar
  12. Amblard M, Fehrentz J-A, Martinez J, Subra G (2006) Methods and protocols of modern solid phase peptide synthesis. Mol Biotechnol 33:239–254CrossRefPubMedGoogle Scholar
  13. Amorim Fernandes JF, Mcalpine M, Halling PJ (2005) Operational stability of subtilisin CLECs in organic solvents in repeated batch and in continuous operation. Biochem Eng J 24(1):11–15CrossRefGoogle Scholar
  14. Andersson L, Blomberg L, Flegel M, Lepsa L, Nilsson B, Verlander M (2000) Large-scale synthesis of peptides. Biopolymers 55:227–250CrossRefPubMedGoogle Scholar
  15. Angell CA, Ansari Y, Zhao Z (2012) Ionic liquids: past, present and future. Faraday Discuss 154:9–27CrossRefPubMedGoogle Scholar
  16. Aranda F, Vacchelli E, Eggermont A, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G, Galluzzi L (2013) Trial watch: peptide vaccines in cancer therapy. OncoImmunology 2:e26621CrossRefPubMedPubMedCentralGoogle Scholar
  17. Arroyo M (1998) Immobilized enzymes: theory, methods of study and applications. Ars Pharm 39(2):23–39Google Scholar
  18. Ashie INA, Sorensen TL, Nielsen PM (2002) Effects of papain and a microbial enzyme on meat proteins and beef tenderness. J Food Sci 67:2138–2142CrossRefGoogle Scholar
  19. Aymonier C, Le Meur AC, Heroguez V (2011) Synthesis of nanocomposite particles using supercritical fluids: a bridge with bio-applications. In: Trindade T, da Silva ALD (eds) Nanocomposite particles for bio-applications: materials and bio-interfaces. Pan Stanford Publishing Ltd, Singapore, pp 145–164CrossRefGoogle Scholar
  20. Babizhayev MA (2006) Biological activities of the natural imidazole-containing peptidomimetics N-acetylcarnosine, carcinine and L-carnosine in ophthalmic and skin care products. Life Sci 78:2343–2357CrossRefPubMedGoogle Scholar
  21. Bahamondes C, Wilson L, Bernal C, Álvaro G, Guzmán F, Illanes A (2016) Synthesis of the kyotorphin precursor benzoyl-L-tyrosine-L-argininamide with immobilized α-chymotrypsin in sequential batch with enzyme reactivation. Biotechnol Prog 32:54–59CrossRefPubMedGoogle Scholar
  22. Baker PJ, Numata K (2012) Chemoenzymatic synthesis of poly(L-alanine) in aqueous environment. Biomacromolecules 13:947–951CrossRefPubMedGoogle Scholar
  23. Barberis S, Quiroga E, Arribére MC, Priolo N (2002) Peptide synthesis in aqueous-organic biphasic systems catalyzed by a protease isolated from Morrenia brachysthephana (Asclepiadaceae). J Mol Catal B Enzym 17:39–47CrossRefGoogle Scholar
  24. Barberis S, Quiroga E, Morcelle S, Priolo N, Luco JM (2006) Study of phytoproteases stability in aqueous-organic biphasic systems using linear free energy relationships. J Mol Catal B Enzym 38:95–103CrossRefGoogle Scholar
  25. Barberis S, Guzmán F, Illanes A, López-Santín J (2008) Study cases of enzymatic processes. In: Illanes A (ed) Enzyme biocatalysis: principles and applications. Springer, Dordrecht, pp 253–273CrossRefGoogle Scholar
  26. Barbosa O, Ortiz C, Berenguer-Murcia Á, Torres R, Rodrigues RC, Fernandez-Lafuente R (2015) Strategies for the one-step immobilization-purification of enzymes as industrial biocatalysts. Review. Biotechnol Adv 33(5):435–456CrossRefPubMedGoogle Scholar
  27. Behrendt R, White P, Offer J (2016) Advances in Fmoc solid-phase peptide synthesis. J Pept Sci 22:4–27CrossRefPubMedPubMedCentralGoogle Scholar
  28. Białkowska AM, Morawski K, Florczak T (2017) Extremophilic proteases as novel and efficient tools in short peptide synthesis. J Ind Microbiol Biotechnol 44(9):1325–1342CrossRefPubMedGoogle Scholar
  29. Bolhassani A, Safaiyan S, Rafati S (2011) Improvement of different vaccine delivery systems for cancer therapy. Mol Cancer 10:3.  https://doi.org/10.1186/1476-4598-10-3CrossRefPubMedPubMedCentralGoogle Scholar
  30. Bordussa F (2002) Proteases in organic synthesis. Chem Rev 102:4817–4867CrossRefGoogle Scholar
  31. Bornscheuer UT, Kazlauskas RJ (1999) Hydrolases in Organic Synthesis. Wiley, Weinheim, p 336Google Scholar
  32. Bougatef A, Nedjar-Arroume N, Manni L, Ravallec R, Barkia A, Guillochon D, Nasri M (2010) Purification and identification of novel antioxidant peptides form enzymatic hydrolysates from sardinelle (Sardinella aurita) by-products proteins. Food Chem 118:559–565CrossRefGoogle Scholar
  33. Braeutigam S, Meyerand SB, Botz DW (2007) Asymmetric whole cell biotransformations in biphasic ionic liquid/water-systems by use of recombinant Escherichia coli with intracellular cofactor regeneration. Tetrahedron Asymmetry 18:1883–1887CrossRefGoogle Scholar
  34. Bray BL (2003) Large-scale manufacture of peptide therapeutics. Nat Rev Drug Discov 2:587–593CrossRefPubMedGoogle Scholar
  35. Bruckdorfer T, Marder O, Albericio F (2004) From production of peptides in milligram amounts for research to multi-tons quantities for drugs of the future. Curr Pharm Biotechnol 5:29–43CrossRefPubMedGoogle Scholar
  36. Brunner G (2010) Applications of supercritical fluids. Ann Rev Chem Biomol Eng 1:321–342CrossRefGoogle Scholar
  37. Burlina F, Papageorgiou P, Morris C, Whitee PD, Offer J (2014) In situ thioester formation for protein ligation using α-methylcysteine. Chem Sci 5:766–770CrossRefGoogle Scholar
  38. Caminiti R, Gontrani L (2014) The structure of ionic liquids. Springer, Dordrecht, pp 5–193CrossRefGoogle Scholar
  39. Cao C, Matsuda T (2016) Biocatalysis in organic solvents, supercritical fluids and ionic liquids. In: Goswami A, Stewart J (eds) Organic synthesis using biocatalysis. Elsevier, Amsterdam, pp 67–97CrossRefGoogle Scholar
  40. Cao L, Schmid RD (2005) Carrier-bound immobilized enzymes, principles applications and design. Wiley, Weinheim, p 578CrossRefGoogle Scholar
  41. Cao L, Van Langen L, Sheldon RA (2003) Immobilised enzymes: carrier-bound or carrier free? Curr Opin Biotechnol 14(4):387–394CrossRefPubMedGoogle Scholar
  42. Cao SL, Xu H, Xue-Hui L, Wen-Yong L, Min-Hua Z (2015) Papain magnetic nanocrystalline cellulose nanobiocatalyst: a highly efficient biocatalyst for dipeptide biosynthesis in deep eutectic solvents. ACS Sustain Chem Eng 3:1589–1599CrossRefGoogle Scholar
  43. Castro GR (2000) Properties of soluble α-chymotrypsin in neat glycerol and water. Enzym Microb Technol 27:143–150CrossRefGoogle Scholar
  44. Cerezo D, Pena MJ, Mijares M, Martinez G, Blanca I, De Sanctis BJ (2015) Peptide vaccines for cancer therapy. Recent Pat Inflamm Allergy Drug Discov 9:38–45CrossRefPubMedGoogle Scholar
  45. Chalamaiah B, Dinesh Kumar B, Hemalatha R, Jyothirmayi T (2012) Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chem 135:3020–3038CrossRefPubMedGoogle Scholar
  46. Chan WC, White PD (2000) Fmoc solid phase peptide synthesis: a practical approach. Oxford University Press, Oxford, p 341Google Scholar
  47. Chandrashekar J, Hoon MA, Ryba NJP, Zuker CS (2006) The receptors and cells for mammalian taste. Nature 444:288–294CrossRefPubMedGoogle Scholar
  48. Chau Y, Dang NM, Tan FE, Langer R (2006) Investigation of targeting mechanism of new dextran-peptide-methotrexate conjugates using biodistribution study in matrix-metalloproteinase-overexpressing tumor xenograft model. J Pharm Sci 95:542–551CrossRefPubMedGoogle Scholar
  49. Chiappe C, Rajamani S (2011) Structural effects on the physico-chemical and catalytic properties of acidic ionic liquids: an overview. Eur J Org 28:5517–5539CrossRefGoogle Scholar
  50. Clapés P, Espelt L, Navarro MA, Conxita S (2001) Highly concentrated water in oil emulsions as novel reaction media for protease-catalysed kinetically controlled peptide synthesis. J Chem Soc Perkin Trans 2:1394–1399CrossRefGoogle Scholar
  51. Clouthier CM, Pelletier JN (2012) Expanding the organic toolbox: a guide to integrating biocatalysis in synthesis. Chem Soc Rev 41:1585–1605CrossRefPubMedGoogle Scholar
  52. Copolovici DM, Langel K, Eriste E, Langel Ü (2014) Cell-penetrating peptides: design, synthesis, and applications. ACS Nano 8:1972–1994CrossRefPubMedGoogle Scholar
  53. Craik CS, Page MJ, Madison EL (2011) Proteases as therapeutics. Biochem J 435:1–16CrossRefPubMedPubMedCentralGoogle Scholar
  54. Culbertson JY, Kreider RB, Greenwood M, Cooke M (2010) Effects of beta-alanine on muscle carnosine and exercise performance: a review of the current literature. Nutrients 2:75–98CrossRefPubMedPubMedCentralGoogle Scholar
  55. D’Arrigo P, Kanerva LT, Li X-G, Saraceno C, Servi S, Tessaro D (2009) Enzymatic synthesis of carnosine derivatives catalysed by Burkholderia cepacia lipase. Tetrahedron Asymmetry 20:1641–1645CrossRefGoogle Scholar
  56. Dalal S, Kapoor M, Gupta MN (2007) Preparation and characterization of combi-CLEAs catalyzing multiple non-cascade reactions. J Mol Catal B Enzym 44:128–132CrossRefGoogle Scholar
  57. Dallas DC, Guerrero A, Parker EA, Robinson RC, Gan J, German JB, Barile D, Lebrilla CB (2015) Current peptidomics: applications, purification, identification, quantification, and functional analysis. Proteomics 15:1026–1038CrossRefPubMedPubMedCentralGoogle Scholar
  58. Dana EW, Senecal KJ, Goddard JM (2017) Immobilization of chymotrypsin on hierarchical nylon 6,6 nanofiber improves enzyme performance. Colloids Surf B Biointerfaces 154:270–278CrossRefGoogle Scholar
  59. Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306CrossRefPubMedGoogle Scholar
  60. Diego TD, Lozano P, Abad MA, Steffensky K, Vaultier MJ, Iborra L (2009) On the nature of ionic liquids and their effects on lipases that catalyze ester synthesis. J Biotechnol 140:234–241CrossRefPubMedGoogle Scholar
  61. Domínguez de María P (2012) Ionic liquids in biotransformation and organocatalysis: solvents and beyond. Wiley, Hoboken, pp 1–456CrossRefGoogle Scholar
  62. Doukyu N, Ogino H (2010) Organic solvent-tolerant enzymes. Biochem Eng J 48:270–282CrossRefGoogle Scholar
  63. Dürr UHN, Sudheendra US, Ramamoorthy A (2006) LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim Biophys Acta 1758:1408–1425CrossRefPubMedGoogle Scholar
  64. Earle MJ, Esperança JMSS, Gilea MA, Canongia Lopes JN, Rebelo LPN, Luís PN, Magee PJW, Joseph W, Seddon KR, Widegren JA (2006) The distillation and volatility of ionic liquids. Nature 439:831–834CrossRefPubMedGoogle Scholar
  65. El Oualid F, Merkx R, Ekkebus R, Hameed DS, Smit JJ, de Jong A, Hilkmann H, Sixma TK, Ovaa H (2010) Chemical synthesis of ubiquitin, ubiquitin-based probes, and diubiquitin. Angew Chem Int Ed 49:10149–10153CrossRefGoogle Scholar
  66. El-Faham A, Albericio F (2011) Peptide coupling reagents, more than a letter soup. Chem Rev 111:6557–6602CrossRefPubMedGoogle Scholar
  67. Erbeldinger M, Mesiano AJ, Russell AJ (2010) Enzymatic catalysis of formation of Z-aspartame in ionic liquid an alternative to enzymatic catalysis in organic solvents. Biotechnol Prog 16:1129–1131CrossRefGoogle Scholar
  68. Feijoo-Siota L, Villa TG (2011) Native and biotechnologically engineered plant proteases with industrial applications. Food Bioprocess Technol 4:1066–1088CrossRefGoogle Scholar
  69. Feng W, Ji P (2011) Enzymes immobilized on carbon nanotubes. Biotechnol Adv 29:889–895CrossRefPubMedGoogle Scholar
  70. Fernandez-Lorente G, Wilson L, Fernandez-Lafuente R, Illanes A, Guisán JM, Palomo JM (2011) CLEAs of lipases and poly-ionic polymers: a simple way of preparing stable biocatalysts with improved properties. Enzym Microb Technol 39:750–755Google Scholar
  71. Fields K, Falla TJD, Rodan K, Bush L (2009) Bioactive peptides: signaling the future. J Cosmet Dermatol 8:8–13CrossRefPubMedGoogle Scholar
  72. Fité M, Clapés P, López-Santín J, Benaiges MD, Caminal G (2002) Integrated process for the enzymatic synthesis of the octapeptide PhAcCCK-8. Biotechnol Prog 18:1214–1220CrossRefPubMedGoogle Scholar
  73. Fonseca SB, Pereira MP, Kelley SO (2009) Recent advances in the use of cell-penetrating peptides for medical and biological applications. Adv Drug Deliv Rev 61:953–964CrossRefPubMedGoogle Scholar
  74. Foroughi F, Keshavarz T, Evans CS (2006) Specificities of proteases for use in leather manufacture. J Chem Technol Biotechnol 81:257–261CrossRefGoogle Scholar
  75. Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20:122–128CrossRefPubMedGoogle Scholar
  76. Franco-Vega A, Palou E, Ramírez-Corona N, López-Malo A (2014) Ionic liquids: a “green” alternative for extraction processes in the food industry. Sel Top Food Eng 8:15–26Google Scholar
  77. Gill I, López-Fandiño R, Jorba X, Vulfson EN (1996) Biologically active peptides and enzymatic approaches to their production. Enzym Microb Technol 18:162–183CrossRefGoogle Scholar
  78. Gobbetti M, Minervini F, Rizzello CG (2004) Angiotensin I-converting-enzyme-inhibitory and antimicrobial bioactive peptides. Int J Dairy Technol 57:173–188CrossRefGoogle Scholar
  79. Gómez-Puyou MT, Gómez-Puyou A (1998) Enzymes in low water systems. Crit Rev Biochem Mol Biol 33:53–89CrossRefPubMedGoogle Scholar
  80. Gorke J, Srienc F, Kazlauskas R (2010) Toward advanced ionic liquids. Polar, enzyme-friendly solvents for biocatalysis. Biotechnol Bioprocess Eng 15:40–53CrossRefGoogle Scholar
  81. Gorouhi F, Maibach HI (2009) Role of topical peptides in preventing or treating aged skin. Int J Cosmet Sci 31:327–345CrossRefPubMedGoogle Scholar
  82. Gu Y (2012) Multicomponent reactions in unconventional solvents: state of the art. Green Chem 14:2091–2128CrossRefGoogle Scholar
  83. Gutarra MLE, Miranda LSM, de Souza ROMA (2016) Enzyme immobilization for organic synthesis. In: Goswami A, Stewart J (eds) Organic synthesis using biocatalysis. Elsevier, Amsterdam, pp 99–126CrossRefGoogle Scholar
  84. Guzmán F, Barberis S, Illanes A (2007) Peptide synthesis: chemical or enzymatic. Electron J Biotechnol 10:279–314CrossRefGoogle Scholar
  85. Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. Chem Rev 111:3508–3576CrossRefPubMedGoogle Scholar
  86. Halling PJ (1994) Thermodynamic predictions for biocatalysis in nonconventional media: theory, tests, and recommendations for experimental design and analysis. Enzym Microb Technol 16:178–206CrossRefGoogle Scholar
  87. Harris RC, Hoffman JR, Allsopp A, Routledge NBH (2012) L-glutamine absorption is enhanced after ingestion of L-alanylglutamine compared with the free amino acid or wheat protein. Nutr Res 32:272–277CrossRefPubMedGoogle Scholar
  88. Hayes R, Warr GG, Atkin R (2015) Structure and nanostructure in ionic liquids. Chem Rev 115:6357–6426CrossRefPubMedGoogle Scholar
  89. Heck T, Makam VS, Lutz J, Blank LM, Schmid A, Seebach D, Kohler H-PE, Geueke B (2010) Kinetic analysis of L-carnosine formation by β-aminopeptidases. Adv Synth Catal 352:407–415Google Scholar
  90. Hipkiss AR (2007) Could carnosine or related structures suppress Alzheimer’s disease? J Alzheimers Dis 11:229–240CrossRefPubMedGoogle Scholar
  91. Hipkiss AR, Brownson C (2000) A possible new role for the anti-ageing peptide carnosine. Cell Mol Life Sci 57:747–753CrossRefPubMedGoogle Scholar
  92. Hou R-Z, Zhang N, Li G, Huang Y-B, Wang H, Xiao Y-P, Liu Y-J, Yang Y, Zhao L, Zhang X-Z (2005) Synthesis of the tripeptide RGD amide by a combination of chemical and enzymatic methods. J Mol Catal B Enzym 37:9–15CrossRefGoogle Scholar
  93. Hussain W, Pollard DJ, Truppo M, Lye GJ (2008) Enzymatic ketone reductions with co-factor recycling: improved reactions with ionic liquid co-solvents. J Mol Catal B Enzym 55:19–29CrossRefGoogle Scholar
  94. Illanes A (2016) Biocatalysis in organic media. In: Coelho MA, Machado de Castro A (eds) White biotechnology for sustainable chemistry. RSC, Cambridge, pp 36–51Google Scholar
  95. Illanes A, Fajardo A (2001) Kinetically controlled synthesis of ampicillin with immobilized penicillin acylase in the presence of organic cosolvents. J Mol Catal B Enzym 11:587–595CrossRefGoogle Scholar
  96. Illanes A, Guzmán F, Barberis S (2009a) Proteases as powerful catalysts for organic synthesis. In: Hughes AB (ed) Amino acids, peptides y proteins in organic chemistry. Wiley, Weinheim, pp 341–361Google Scholar
  97. Illanes A, Guzmán F, Barberis S (2009b) Aplicaciones emergentes en reacciones de síntesis. In: Caffini N (ed) Enzimas Proteolíticas de Vegetales Superiores. Aplicaciones Industriales, Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo (CYTED). pp 201–219Google Scholar
  98. Illanes A, Cauerhff A, Wilson L, Castro GR (2012) Recent trends in biocatalysis engineering. Bioresour Technol 115:48–57CrossRefPubMedPubMedCentralGoogle Scholar
  99. Ingham AB, Moore RJ (2007) Recombinant production of antimicrobial peptides in heterologous microbial systems. Biotechnol Appl Biochem 47:1–9CrossRefPubMedGoogle Scholar
  100. Jaeger V, Burney P, Pfaendtner J (2015) Comparison of three ionic liquid-tolerant cellulases by molecular dynamics. Biophys J 108:880–892CrossRefPubMedPubMedCentralGoogle Scholar
  101. Jakubke HD, Kuhl P, Konnecke A (1985) Basic principles of protease-catalyzed peptide bond formation. Angew Chem 24:85–93CrossRefGoogle Scholar
  102. Jares Contesini F, Rodrigues de Melo R, Harumi Sato H (2018) An overview of Bacillus proteases: from production to application. Crit Rev Biotechnol 38(3):321–334CrossRefGoogle Scholar
  103. Johnson IS (1983) Human insulin from recombinant DNA technology. Science 219:632–637CrossRefPubMedGoogle Scholar
  104. Kanlayavattanakul M, Lourith N (2010) Lipopeptides in cosmetics. Int J Cosmet Sci 32:1–8CrossRefPubMedGoogle Scholar
  105. Kaspar AA, Reichert JM (2013) Future directions for peptide therapeutics development. Drug Discov Today 18:807–817CrossRefPubMedGoogle Scholar
  106. Keen H, Pickup JC, Billous RW, Glynne A, Viberti GC, Jarrett RJ, Marsden R (1980) Human insulin produced by recombinant DNA technology: safety and hypoglycaemic potency in healthy men. Lancet 316(8191):398–401CrossRefGoogle Scholar
  107. Khandelwal S, Kumar Tailor Y, Mahendra K (2016) Deep eutectic solvents (DESs) as eco-friendly and sustainable solvent/catalyst systems in organic transformations. J Mol Liq 215:345–386CrossRefGoogle Scholar
  108. Kim C, Shin CS (2001) Solvent-free enzymatic synthesis of alitame precursor using eutectic substrate mixtures. Enzym Microb Technol 28:611–616CrossRefGoogle Scholar
  109. Kim S-K, Wijesekara I (2010) Development and biological activities of marine-derived bioactive peptides: a review. J Funct Foods 2:1–9CrossRefGoogle Scholar
  110. Kim SY, Gunasekaran S, Olson NF (2004) Combined use of chymosin and protease from Cryphonectria parasitica for control of meltability and firmness of Cheddar cheese. J Dairy Sci 87:274–283CrossRefPubMedGoogle Scholar
  111. Kim DY, Han MK, Oh HW, Bae KS, Jeong TS, Kim SU, Shin DH, Kim IH, Rhees YH, Son KH, Park HY (2010) Novel intracellular GH10 xylanase from Cohnella laeviribosi HY-21: biocatalytic properties and alterations of substrate specificities by site-directed mutagenesis of Trp residues. Bioresour Technol 101(22):8814–8821CrossRefPubMedGoogle Scholar
  112. Kirk O, Vedel Borchert T, Crone Fuglsang C (2002) Industrial enzyme application. Curr Opin Biotechnol 13:345–351CrossRefPubMedGoogle Scholar
  113. Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409:241–246CrossRefPubMedGoogle Scholar
  114. Knez Z, Marko E, Leitgeb M, Primo M, Knez M, Skerget M (2014) Industrial applications of supercritical fluids: a review. Energy 77:235–243CrossRefGoogle Scholar
  115. Kong XZ, Guo MM, Hua YF, Dong C, Zhang CM (2008) Enzymatic preparation of immunomodulating hydrolysates from soy proteins. Bioresour Technol 99:8873–8879CrossRefPubMedGoogle Scholar
  116. Korhonen H, Pihlanto A (2003) Food-derived bioactive peptides - opportunities for designing future foods. Curr Pharm Des 9:1297–1308CrossRefPubMedGoogle Scholar
  117. Korhonen H, Pihlanto A (2006) Bioactive peptides: production and functionality. Int Dairy J 16:945–960CrossRefGoogle Scholar
  118. Kosmulski M, Gustafsson J, Rosenholm JB (2004) Thermal stability of low temperature ionic liquids revisited. Thermochim Acta 412:47–53CrossRefGoogle Scholar
  119. Kosseva MR (2013) Use of immobilized biocatalyst for valorization of whey lactose. In: Kosseva MR, Webb C (eds) Food industry wastes. Assessment and recuperation of commodities. Academic, San Diego, pp 137–156CrossRefGoogle Scholar
  120. Kreymann KG, Berger MM, Deutz NEP, Hiesmayr M, Jolliet P, Kazandjiev G, Nitenberg G, van den Berghe G, Wernerman J (2006) ESPEN guidelines on enteral nutrition: Intensive care. Clin Nutr 25:210–223CrossRefPubMedPubMedCentralGoogle Scholar
  121. Krowarsch DJ, Zakrzewska M, Smalas AO, Otlewski J (2005) Structure-function relationships in serine protease-bovine pancreatic trypsin inhibitor interaction. Protein Pept Lett 12:403–407CrossRefPubMedGoogle Scholar
  122. Kumar D, Bhalla TC (2005) Microbial proteases in peptide synthesis: approaches and applications. Appl Microbiol Biotechnol 68:726–736CrossRefPubMedGoogle Scholar
  123. Kurihara K (2015) Umami the fifth basic taste: history of studies on receptor mechanisms and role as a food flavor. Biomed Res Int 2015:189402.  https://doi.org/10.1155/2015/189402CrossRefPubMedPubMedCentralGoogle Scholar
  124. de la Rica R, Matsui H (2010) Applications of peptide and protein-based materials in bionanotechnology. Chem Soc Rev 39:3499–3509CrossRefPubMedGoogle Scholar
  125. Lee BH (2015) Fundamentals of food technology, 2nd edn. Wiley Blackwell, Chichester, pp 334–335CrossRefGoogle Scholar
  126. Li Y (2011) Recombinant production of antimicrobial peptides in Escherichia coli: a review. Protein Expr Purif 80:260–267CrossRefPubMedGoogle Scholar
  127. Li W, Joshi MD, Singhania S, Ramsey KH, Murthy AK (2014) Peptide vaccine: progress and challenges. Vaccine 2:515–536CrossRefGoogle Scholar
  128. Liu K, Zhu F, Zhu L, Chen G, He B (2015) Highly efficient enzymatic synthesis of Z-aspartame in aqueous medium via in situ product removal. Biochem Eng J 98:63–67CrossRefGoogle Scholar
  129. Lloyd-Williams P, Giralt E (2000) Solid-phase convergent approaches to the synthesis of native peptides and proteins. In: Kates SA, Albericio F (eds) Solid-phase synthesis: a practical guide. Marcel Dekker, New York, pp 377–418Google Scholar
  130. Lloyd-Williams P, Albericio F, Giralt E (1993) Convergent solid-phase peptide synthesis. Tetrahedron 49:11065–11133CrossRefGoogle Scholar
  131. Loppinet-Serani A, Aymonier C, Cansell F (2010) Supercritical water for environmental technologies. J Chem Technol Biotechnol 85:583–589CrossRefGoogle Scholar
  132. Ludwig R, Kragl U (2007) Do we understand the volatility of ionic liquids? Angew Chem 46:6582–6584CrossRefGoogle Scholar
  133. Lupo MP, Cole AL (2007) Cosmeceutical peptides. Dermatol Ther 20:343–349CrossRefPubMedGoogle Scholar
  134. Madeira Lau R, van Rantwijk F, Seddon KR, Sheldon RA (2000) Lipase-catalyzed reactions in ionic liquids. Org Lett 2:4189–4191CrossRefPubMedGoogle Scholar
  135. Madhu A, Chakraborty JN (2017) Developments in application of enzymes for textile processing. J Clean Prod 145:114–133CrossRefGoogle Scholar
  136. Madureira AR, Tavares T, Gomes AMP, Pintado ME, Malcata FX (2010) Physiological properties of bioactive peptides obtained from whey proteins. J Dairy Sci 93:437–455CrossRefPubMedGoogle Scholar
  137. Mahmood A, Fitz Gerald AJ, Marchbank T, Ntatsaki E, Murray D, Ghosh S, Playford RJ (2007) Zinc carnosine, a health food supplement that stabilises small bowel integrity and stimulates gut repair processes. Gut 56:168–175CrossRefPubMedGoogle Scholar
  138. Majeric EM, Primozic I, Hrenar T, Smolko A, Dokli I, Salopek-Sondi B, Tang I (2012) Catalytic activity of halohydrin dehalogenases towards spiroepoxides. Org Biomol Chem 10:5063–5072CrossRefGoogle Scholar
  139. Makowski K, Vigevani L, Albericio F, Valcárcel J, Álvarez M (2016) Sudemycin K: synthetic antitumor splicing inhibitor variant with improved activity and versatile chemistry. ACS Chem Biol 12(1):163–173CrossRefPubMedGoogle Scholar
  140. Marahiel M (2009) Working outside the protein-synthesis rules: insights into non-ribosomal peptide synthesis. J Pept Sci 15:799–807CrossRefPubMedGoogle Scholar
  141. Martin JF, Demain AL (1980) Control of antibiotic biosynthesis. Microbiol Rev 44:230–251PubMedPubMedCentralGoogle Scholar
  142. Matteo CC, Cooney CL, Demain AL (1976) Production of Gramicidin S synthetases by Bacillus brevis in continuous culture. J Gen Microbiol 96:415–422CrossRefPubMedGoogle Scholar
  143. Maugeri Z, Dominguez de Maria P (2012) Novel choline-chloride-based deep-eutectic-solvents with renewable hydrogen bond donors: levulinic acid and sugar-based polyols. RSC Adv 2:421–425CrossRefGoogle Scholar
  144. Maugeri Z, Leitner W, Domínguez de María P (2013) Chymotrypsin catalyzed peptide synthesis in deep eutectic solvents. Eur J Org Chem 20:4179–4449Google Scholar
  145. Maurer K-H (2004) Detergent proteases. Curr Opin Biotechnol 15:330–334CrossRefPubMedGoogle Scholar
  146. Mazur RH, Schlatter JM, Goldkamp AH (1969) Structure-taste relationships of some dipeptides. J Am Chem Soc 91:2684–2691CrossRefPubMedGoogle Scholar
  147. Meisel H, FitzGerald RJ (2003) Biofunctional peptides from milk proteins: mineral binding and cytomodulatory effects. Curr Pharm Des 9:1289–1295CrossRefPubMedGoogle Scholar
  148. Merrifield B (1986) Solid phase synthesis. Science 232:341–347CrossRefPubMedGoogle Scholar
  149. Mishima K, Matsuyama K, Baba M, Chidori M (2003) Enzymatic dipeptide synthesis by surfactant-coated α-chymotrypsin complexes in supercritical carbon dioxide. Biotechnol Prog 19:281–284CrossRefPubMedGoogle Scholar
  150. Mohanty AK, Mukhopadhyay UK, Grover S, Batish VK (1999) Bovine chymosin: production by rDNA technology and application in cheese manufacture. Biotechnol Adv 17:205–217CrossRefPubMedGoogle Scholar
  151. Monsan P, Duteurtre B, Moll M, Durand G (1978) Use of papain immobilized on spherosil for beer chillproofing. J Food Sci 43:424–427CrossRefGoogle Scholar
  152. Monteiro de Souza P, de Assis Bittencourt ML, Canielles Caprara C, de Freitas M, Coppini de Almeida P, Silveira D, Fonseca YM, Ximenes Ferreira Filho E, Pessoa A Jr, Oliveira Magalhaes P (2015) A biotechnology perspective of fungal proteases. Braz J Microbiol 46:337–346CrossRefGoogle Scholar
  153. Morcelle del Valle S, Barberis S, Priolo N, Caffini N, Clapés P (2006) Comparative behaviour of proteinases from the latex of Carica papaya y Funastrum clausum as catalysts for the synthesis of Z-Ala-Phe-OMe. J Mol Catal B Enzym 41:117–124CrossRefGoogle Scholar
  154. Morini G, Bassoli A, Temussi PA (2005) From small sweeteners to sweet proteins: anatomy of the binding sites of the human T1R2-T1R3 receptor. J Med Chem 48:5520–5529CrossRefPubMedGoogle Scholar
  155. Mueller J, Kretzschmar I, Volkmer R, Boisguerin P (2008) Comparison of cellular uptake using 22 CPPs in 4 different cell lines. Bioconjug Chem 19:2363–2374CrossRefPubMedGoogle Scholar
  156. Muhammad M, Kazunori N, Noriho K, Masahiro G (2010) Recent advances of enzymatic reactions in ionic liquids. Biochem Eng J 48:295–314CrossRefGoogle Scholar
  157. Murata T, Horinouchi S, Beppu T (1993) Production of poly(L-aspartyl-L-phenylalanine) in Escherichia coli. J Biotechnol 28:301–312CrossRefPubMedGoogle Scholar
  158. Murray M (2016) L-Carnosine: a underutilized dietary supplement. http://doctormurray.com/l-carnosine-a-underutilized-dietary-supplement/
  159. Nagpal R, Behare P, Rana R, Kumar A, Kumar M, Arora S, Morotta F, Jain S, Yadav H (2011) Bioactive peptides derived from milk proteins and their health beneficial potentials: an update. Food Funct 2:18–27CrossRefPubMedPubMedCentralGoogle Scholar
  160. Neidelman SL (1991) Historical perspective on the industrial uses of biocatalysts. In: Dordick JS (ed) Biocatalysts for industry. Plenum, New York, pp 21–33CrossRefGoogle Scholar
  161. Nguyen TT, Chang S-C, Evnouchidou I, York IA, Zikos C, Rock KL, Goldberg AL, Stratikos E, Stern JL (2011) Structural basis for antigenic peptide precursor processing by the endoplasmic reticulum aminopeptidase ERAP1. Nat Struct Mol Biol 18:604–613CrossRefPubMedPubMedCentralGoogle Scholar
  162. Nielsen PM, Olsen HS (2002) Enzymic modification of food protein. In: Whitehurst RJ, Law BA (eds) Enzymes in food technology. CRC Press, Boca Raton, pp 109–143Google Scholar
  163. Noguchi M, Kobayashi K, Suetsugu N, Tomiyasu K, Suekane S, Yamada A, Itoh K, Noda S (2003) Induction of cellular and humoral immune responses to tumor cells and peptides in HLA-A24 positive hormone-refractory prostate cancer patients by peptide vaccination. Prostate 57:80–92CrossRefPubMedGoogle Scholar
  164. Novoselov NP, Sashina ES, Petrenko VE, Zaborsky M (2007) Study of dissolution of cellulose in ionic liquids by computer modeling. Fibre Chem 39:153–158CrossRefGoogle Scholar
  165. Park HJ, Cho DH, Kim HJ, Lee JY, Cho BK, Bang SI, Song SY, Yamasaki S, Di Nardo A, Gallo RL (2009) Collagen synthesis is suppressed in dermal fibroblasts by the human antimicrobial peptide LL-37. J Investig Dermatol 129:843–850CrossRefPubMedGoogle Scholar
  166. Patarroyo ME, Amador R, Clavijo P, Moreno A, Guzmán F, Romero P, Tascon R, Franco A, Murillo LA, Ponton G, Trujillo G (1988) A synthetic vaccine protects humans against challenge with asexual blood stages of Plasmodium falciparum malaria. Nature 332:158–161CrossRefPubMedGoogle Scholar
  167. Pham TPT, Cho CW, Yun YS (2010) Environmental fate and toxicity of ionic liquids: a review. Water Res 44:352–372CrossRefPubMedGoogle Scholar
  168. Powers CJ, McLeskey SW, Wellstein A (2000) Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer 7:165–197CrossRefPubMedGoogle Scholar
  169. Prego C, Torres D, Alonso MJ (2005) The potential of chitosan for the oral administration of peptides. Expert Opin Drug Deliv 2:843–854CrossRefPubMedGoogle Scholar
  170. Purcell AW, McCluskey J, Rossjohn J (2007) More than one reason to rethink the use of peptides in vaccine design. Nat Rev Drug Discov 6:404–414CrossRefPubMedGoogle Scholar
  171. Quiroga E, Priolo N, Marchese J, Barberis S (2005) Stability of araujiain, a novel plant protease, on different organic systems. Acta Farm Bonaer 24:204–208Google Scholar
  172. Quiroga E, Priolo N, Obregón D, Marchese J, Barberis S (2008) Peptide synthesis in aqueous-organic media catalyzed by proteases from latex of Araujia hortorum (Asclepiadaceae) fruits. Biochem Eng J 39:115–120CrossRefGoogle Scholar
  173. Radzishevsky IS, Rotem S, Bourdetsky D, Navon-Venezia S, Carmeli Y, Mor A (2007) Improved antimicrobial peptides based on acyl-lysine oligomers. Nat Biotechnol 25:657–659CrossRefPubMedGoogle Scholar
  174. van Rantwijk F, Sheldon RA (2007) Biocatalysis in ionic liquids. Chem Rev 107:2757–2785CrossRefPubMedGoogle Scholar
  175. Remsing RC, Hernandez G, Swatloski RP, Massefski WW, Rogers RD, Moyna G (2008) Solvation of carbohydrates in N,N-dialkylimidazolium ionic liquids: a multinuclear NMR spectroscopy study. J Phys Chem B 112:11071–11078CrossRefPubMedGoogle Scholar
  176. Roessl U, Nahalka J, Nidetzky B (2010) Carrier-free immobilized enzymes for biocatalysis. Biotechnol Lett 32:341–350CrossRefPubMedGoogle Scholar
  177. Rub C, Konig B (2012) Low melting mixtures in organic synthesis – an alternative to ionic liquids? Green Chem 14:2969–2982CrossRefGoogle Scholar
  178. Ruczyńsky J, Lewandowska B, Mucha P, Rekowsky P (2008) Problem of aspartimide formation in Fmoc-based solid-phase peptide synthesis using Dmab group to protect side chain of aspartic acid. J Pept Sci 14:335–341CrossRefGoogle Scholar
  179. Sawant AD, Raut DG, Darvatkar NB (2011) Recent developments of task-specific ionic liquids in organic synthesis. Green Chem 4:41–54Google Scholar
  180. Schaafsma G (2009) Safety of protein hydrolysates, fractions thereof and bioactive peptides in human nutrition. Eur J Clin Nutr 63:1161–1168CrossRefPubMedGoogle Scholar
  181. Schaffeld G, Bruzzone P, Illanes A, Curotto M, Aguirre C (1989) Enzymatic treatment of stickwater from fishmeal industry with the protease from Curcubita ficifolia. Biotechnol Lett 11:521–522CrossRefGoogle Scholar
  182. Schilling O, Overall CM (2008) Proteome-derived, database-searchable peptide libraries for identifying protease cleavage sites. Nat Biotechnol 26:685–694CrossRefPubMedGoogle Scholar
  183. Schmidt M, Toplak A, Quaedflieg PJLM, van Maarseveen JH, Nuijens T (2017) Enzyme-catalyzed peptide cyclization. Drug Discov Today Technol 26:11–16CrossRefPubMedGoogle Scholar
  184. Schultz H (2013) Kyowa Hakko’s Sustamine continues market penetration with energy gel launch. http://www.nutraingredients-usa.com/Suppliers2/Kyowa-Hakko-s-Sustamine-continues-market-penetration-with-energy-gel-launch
  185. Schwartzentruber DJ, Lawson DH, Richards JM, Conry RM, Miller DM, Treisman J, Gailani F, Riley L, Conlon K, Pockaj B, Kendra KL, White RL, Gonzalez R, Kuzel TM, Curti B, Leming PD, Whitman ED, Balkissoon J, Reintgen DS, Kaufman H, Marincola FM, Merino MJ, Rosenberg SA, Choyke P, Vena D, Hwu P (2011) Peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med 364:2119–21127CrossRefPubMedPubMedCentralGoogle Scholar
  186. Seabra AB, Durán N (2013) Biological applications of peptide nanotubes: an overview. Peptides 39:47–54CrossRefPubMedGoogle Scholar
  187. Sellami-Kamoun A, Haddar A, El-Hadj Ali N, Ghorbel-Frikha B, Kanoun S, Nasri M (2008) Stability of thermostable alkaline protease from Bacillus licheniformis RP1 in commercial solid laundry detergent formulations. Microbiol Res 163:299–306CrossRefPubMedGoogle Scholar
  188. Shanab K, Neudorfer C, Schirmer E, Spreitzer H (2013) Green solvents in organic synthesis: an overview. Curr Org Chem 17:1179–1187CrossRefGoogle Scholar
  189. Sheih I-C, Wu T-K, Fang TJ (2009) Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems. Bioresour Technol 100:3419–3425CrossRefPubMedGoogle Scholar
  190. Sheldon RA (2011) Characteristic features and biotechnological applications of cross-linked enzyme aggregates (CLEAs). Appl Microbiol Biotechnol 92(3):467–477CrossRefPubMedPubMedCentralGoogle Scholar
  191. Sheldon RA, van Pelt S (2013) Enzyme immobilization in biocatalysts: why, what and how. Chem Soc Rev 42:6223–6235CrossRefPubMedGoogle Scholar
  192. Sheldon RA, Sorgedrager M, Janssen MHA (2007) Use of cross-linked enzyme aggregates (CLEAs) for performing biotransformations. Chem Today 25:62–67Google Scholar
  193. Sheridan C (2012) Proof of concept for next-generation nanoparticle drugs in humans. Nat Biotechnol 30:471–473CrossRefPubMedGoogle Scholar
  194. Singh R, Lillard JW (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223CrossRefPubMedPubMedCentralGoogle Scholar
  195. Slingluff CL (2011) The present and future of peptide vaccines for cancer: single or multiple, long or short, alone or in combination? Cancer J 17:343–350CrossRefPubMedPubMedCentralGoogle Scholar
  196. Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114:11060–11082CrossRefPubMedGoogle Scholar
  197. Solms J (1969) The taste of amino acids, peptides, and proteins. J Agric Food Chem 17:686–688CrossRefGoogle Scholar
  198. Sprenger KG, Jaeger VW, Pfaendtner J (2015) The general amber force field (GAFF) can accurately predict thermodynamic and transport properties of many ionic liquids. J Phys Chem B 119:5882–5895CrossRefPubMedGoogle Scholar
  199. Stepankova V, Bidmanova S, Koudelakova T, Prokop Z, Chaloupkova R, Damborsky J (2013) Strategies for stabilization of enzymes in organic solvents. ACS Catal 3:2823–2836CrossRefGoogle Scholar
  200. Stepankova V, Damborsky J, Chaloupkovaa R (2015) Hydrolases in non-conventional media: Implications for industrial biocatalysis. In: Grunwald P (ed) Industrial biocatalysis. CRC Press, Boca Raton, pp 583–620Google Scholar
  201. Stolarow J, Heinzelmann M, Yeremchuk W, Syldatk C, Hausmann R (2015) Immobilization of trypsin in organic and aqueous media for enzymatic peptide synthesis and hydrolysis reactions. BMC Biotechnol 15(1):77.  https://doi.org/10.1186/s12896-015-0196-yCrossRefPubMedPubMedCentralGoogle Scholar
  202. Stvolinsky SL, Bulygina ER, Fedorova TN, Meguro K, Sato T, Tyulina OV, Abe H, Boldyrev AA (2010) Biological activity of novel synthetic derivatives of carnosine. Cell Mol Neurobiol 30:395–404CrossRefPubMedGoogle Scholar
  203. Sudhakar GK, Bhaskar VK, Ruchi V (2012) A review on ionic liquids-useful reaction green solvents for the future. J Biomed Pharm Res 1:7–12Google Scholar
  204. Sumantha A, Larroche C, Pandey A (2006) Microbiology and industrial biotechnology of food-grade proteases: a perspective. Food Technol Biotechnol 44:211–220Google Scholar
  205. Tavano OL (2013) Protein hydrolysis using proteases: an important tool for food biotechnology. J Mol Catal B Enzym 90:1–11CrossRefGoogle Scholar
  206. Temussi PA (2012) The good taste of peptides. J Pept Sci 18:73–82CrossRefPubMedGoogle Scholar
  207. Thanikaivelan P, Rao JR, Nair BU, Ramasami T (2004) Progress and recent trends in biotechnological methods for leather processing. Trends Biotechnol 22:181–188CrossRefPubMedGoogle Scholar
  208. Toplak A, Nuijens T, Quaedflieg PJLM, Wu B, Janssen DB (2015) Peptide synthesis in neat organic solvents with novel thermostable proteases. Enzym Microb Technol 73-74:20–28CrossRefGoogle Scholar
  209. Toth K, Sedlak E, Musatov A, Zoldak G (2010) Activity of NADH oxidase from Thermus thermophilus in water/alcohol binary mixtures is limited by the stability of quaternary structure. J Mol Catal B Enzym 64:60–67CrossRefGoogle Scholar
  210. Tran DN, Balkus KJ (2011) Perspective of recent progress in immobilization of enzymes. ACS Catal 1:956–968CrossRefGoogle Scholar
  211. Trusek-Holownia A (2003) Synthesis of Z -Ala –Phe.OMe the precursor of bitter dipeptide in the two-phase ethyl acetate-water system catalysed by thermolysin. J Biotechnol 102:153–163CrossRefPubMedGoogle Scholar
  212. Tsomaia N (2015) Peptide therapeutics: targeting the undruggable space. Eur J Med Chem 94:459–470CrossRefPubMedGoogle Scholar
  213. Uhlig T, Kyprianou T, Martinelli FG, Oppici CA, Heiligers D, Hills D, Ribes Calvo X, Verhaert P (2014) The emergence of peptides in the pharmaceutical business: from exploration to exploitation. EuPA Open Proteom 4:58–69CrossRefGoogle Scholar
  214. van Unen D, Engbersen JFJ, Reinhoudt DN (2002) Studies on the mechanism of crown-ether-induced activation of enzymes in non-aqueous media. J Mol Catal B Enzym 11:877–882CrossRefGoogle Scholar
  215. Varela H, Ferrari MD, Belobradjic L, Vázquez A, Loperena ML (1997) Skin unhairing proteases of Bacillus subtilis: production and partial characterization. Biotechnol Lett 19:755–758CrossRefGoogle Scholar
  216. Varvaresou A, Iakovou K (2015) Biosurfactants in cosmetics and biopharmaceuticals. Lett Appl Microbiol 61:214–223CrossRefPubMedGoogle Scholar
  217. Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M (2010) Synthetic therapeutic peptides: science and market. Drug Des Discov 15:40–56Google Scholar
  218. Vossenberg P, Beeftink HH, Nuijens T, Quaedflieg PJLM, Cohen Stuart MA, Tramper J (2012a) Performance of alcalase formulations in near dry organic media: effect of enzyme hydration on dipeptide synthesis. J Mol Catal B Enzym 78:24–31CrossRefGoogle Scholar
  219. Vossenberg P, Beeftink HH, Nuijens T, Cohen Stuart MA, Tramper J (2012b) Selecting optimal conditions for alcalase CLEA-OM for synthesis of dipeptides in organic media. J Mol Catal B Enzym 75:43–49CrossRefGoogle Scholar
  220. Vossenberg P, Beeftink HH, Cohen Stuart MA, Tramper J (2013) Process design for enzymatic peptide synthesis in near-anhydrous organic media. Biocatal Biotransform 31:255–268CrossRefGoogle Scholar
  221. Walsh G (2005) Therapeutic insulins and their large-scale manufacture. Appl Microbiol Biotechnol 67:151–159CrossRefPubMedGoogle Scholar
  222. Wang W, Choi RH, Solares GJ, Tseng H-M, Ding Z, Kim K, Ivy JL (2015) L-Alanylglutamine inhibits signaling proteins that activate protein degradation, but does not affect proteins that activate protein synthesis after an acute resistance exercise. Amino Acids 47:1389–1398CrossRefPubMedGoogle Scholar
  223. Welderufael F, Jauregi P (2010) Development of an integrative process for the production of bioactive peptides from whey by proteolytic commercial mixtures. Sep Sci Technol 45:2226–2234CrossRefGoogle Scholar
  224. Werle M, Bernkop-Schnürch A (2006) Strategies to improve plasma half life time of peptide and protein drugs. Amino Acids 30:351–367CrossRefPubMedGoogle Scholar
  225. Wilson L, Palomo JM, Fernández-Lorente G, Illanes A, Guisán JM, Fernández-Lafuente R (2006a) Improvement of the functional properties of a thermostable lipase from alcaligenes sp. via strong adsorption on hydrophobic support. Enzym Microb Technol 38:975–980CrossRefGoogle Scholar
  226. Wilson L, Fernandez-Lorente G, Fernandez-Lafuente R, Illanes A, Guisan JM, Palomo JM (2006b) CLEAs of lipases and poly-ionic polymers: a simple way of preparing stable biocatalysts with improved properties. Enzym Microb Technol 39:750–755CrossRefGoogle Scholar
  227. Wilson J, Hayes M, Carney B (2011) Angiotensin-I-converting enzyme and prolyl endopeptidase inhibitory peptides from natural sources with a focus on marine processing by-products. Food Chem 129:235–244CrossRefGoogle Scholar
  228. Xu J, Sun H, He X, Bai Z, He B (2013) Highly efficient synthesis of endomorphin-2 under thermodynamic control catalyzed by organic solvent stable proteases with in situ product removal. Bioresour Technol 129:663–666CrossRefPubMedGoogle Scholar
  229. Yagasaki M, Hashimoto S (2008) Synthesis and applications of dipeptides; current status and perspectives. Appl Microbiol Biotechnol 81:13–22CrossRefPubMedGoogle Scholar
  230. Yamazaki T, Benedetti E, Kent D, Goodman M (1994) Conformational requirements for sweet-tasting peptides and peptidomimetics. Angew Chem 33:1437–1451CrossRefGoogle Scholar
  231. Yazawa K, Numata N (2014) Recent advances in chemoenzymatic peptide syntheses. Review. Molecules 19:13755–13774CrossRefPubMedGoogle Scholar
  232. Yeung ATY, Gellatly SL, Hancock REW (2011) Multifunctional cationic host defence peptides and their clinical applications. Cell Mol Life Sci 678:2161–2176CrossRefGoogle Scholar
  233. Yu J, Lin F, Lin S, Pei X, Miao J, Chen X, Gang Wu S, Wang A (2016) A comparative study of papain and bromelain in enzymatic oligomerization of L-Phe methyl ester in aqueous environment. J Mol Catal B Enzym 133(1):S95–S99CrossRefGoogle Scholar
  234. Zaloga GP (2006) Parenteral nutrition in adult inpatients with functioning gastrointestinal tracts: assessment of outcomes. Lancet 367:1101–1111CrossRefPubMedGoogle Scholar
  235. Zaloga GP, Siddiqui RA (2004) Biologically active dietary peptides. Mini Rev Med Chem 4:815–821CrossRefPubMedGoogle Scholar
  236. Zhang Q, De K, Vigier O, Royer S, Jerome F (2012a) Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev 41:7108–7146CrossRefPubMedGoogle Scholar
  237. Zhang X-X, Eden HS, Chen X (2012b) Peptides in cancer nanomedicine: Drug carriers, targeting ligands and protease substrates. J Control Release 159:2–13CrossRefPubMedGoogle Scholar
  238. Zhao X, Lv L, Pan B, Zhang W, Zhang S, Zhang Q (2011) Polymer-supported nanocomposites for environmental application: a review. Chem Eng J 170(2-3):381–394CrossRefGoogle Scholar
  239. Zhou W, Wang PG, Krynitsky AJ, Rader JI (2011) Rapid and simultaneous determination of hexapeptides (Ac-EEMQRR-amide and H2N-EEMQRR-amide) in anti-wrinkle cosmetics by hydrophilic interaction liquid chromatography–solid phase extraction preparation and hydrophilic interaction liquid chromatography with tandem mass spectrometry. J Chromatogr A 1218:7956–7963CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Sonia Barberis
    • 1
    • 2
  • Mauricio Adaro
    • 1
    • 2
  • Anabella Origone
    • 1
    • 2
  • Grisel Bersi
    • 1
    • 2
  • Fanny Guzmán
    • 3
  • Andrés Illanes
    • 4
  1. 1.Laboratorio de Bromatología, Facultad de Química, Bioquímica y FarmaciaUniversidad Nacional de San LuisSan LuisArgentina
  2. 2.INFAP – CCT San Luis – CONICETSan LuisArgentina
  3. 3.Laboratorio de PéptidosNúcleo de Biotecnología Curauma, Pontificia Universidad Católica de ValparaísoValparaísoChile
  4. 4.Escuela de Ingeniería BioquímicaPontificia Universidad Católica de ValparaísoValparaísoChile

Personalised recommendations