Advertisement

Crop Wild Relatives of Root Vegetables in North America

  • Justin E. Anderson
  • Alexandra Campbell
  • Michael B. KantarEmail author
Chapter

Abstract

Root and tuber crops are staples in diets across the world. They are favored due to a large yield associated with the small acreage needed to grow. Generally, they tend to be fairly robust to insect and disease pests and have historically been used as starvation food. Some root and tuber crops, such as potato, sweet potato, or cassava, are the primary source of daily calories for many cultures worldwide. Some tuber crops are only partially domesticated, facilitating the use of crop wild relatives (CWR). Many different cultures have their favorite root crops, but culinary preparation techniques often allow for different tubers to be used, making the acceptance of these crops fairly rapid. Here, we explore the origins and uses of eight tuber and root crops that are important to world diets and have many related wild species in North America.

Keywords

Tubers Species richness Germplasm Plant breeding 

References

  1. AAFC Plant Gene Resources of Canada (2017) Germplasm Resources Information Network-Canadian Version (GRIN-CA) database. Plant Gene Resources of Canada, Saskatoon, SK. http://pgrc3.agr.gc.ca/search_grinca-recherche_rirgc_e.html. Accessed 18 Jan 2017
  2. Alessandro MS, Galmarini CR, Iorizzo M, Simon PW (2013) Molecular mapping of vernalization requirement and fertility restoration genes in carrot. Theor Appl Genet 126:415–423PubMedCrossRefGoogle Scholar
  3. Al-Khatib K, Miller JF (2000) Registration of four genetic stocks of sunflower resistant to imidazolinone herbicides. Crop Sci 40:869–870Google Scholar
  4. Allem AC, Mende RA, Salomã AN, Burl ML (2001) The primary gene pool of cassava (Manihot esculenta Crantz subspecies esculenta, Euphorbiaceae). Euphytica 120:127–132CrossRefGoogle Scholar
  5. Austin DF (1978) The Ipomoea batatas complex-I. taxonomy. Bull Torrey Bot Club 105:114–129CrossRefGoogle Scholar
  6. Austin DF, Huáman Z (1996) A synopsis of Ipomoea (Convolvulaceae) in the Americas. Taxon 45:3–38CrossRefGoogle Scholar
  7. Bamberg J, del Rio A, Kinder D, Louderback L, Pavlik B, Fernandez C (2016) Core collections of potato (Solanum) species native to the USA. Am J Potato Res 93(6):564–571CrossRefGoogle Scholar
  8. Banga O (1957) Origin of the European cultivated carrot. Euphytica 6(1):54–63Google Scholar
  9. BGCI (2017) PlantSearch database. http://bgci.org/plant_search.php. Accessed online. Accessed 10 Aug 2017
  10. Biancardi E (2005) Brief history of sugar beet cultivation. In: Biancardi E, Campbell LG, Skaracis GN, De Biaggi M (eds) Genetics and breeding of sugar beet. Science, Enfield, pp 3–9CrossRefGoogle Scholar
  11. Bock DG, Kane NC, Ebert DP, Rieseberg LH (2014) Genome skimming reveals the origin of the Jerusalem artichoke tuber crop species: neither from Jerusalem nor an Artichoke. New Phytol 201:1021–1030PubMedCrossRefGoogle Scholar
  12. Bradbury EJ, Duputié A, Delêtre M, Roullier C, Narváez-Trujillo A, Manu-Aduening JA, Emshwiller E, McKey D (2013) Geographic differences in patterns of genetic differentiation among bitter and sweet manioc (Manihot esculenta subsp. esculenta; Euphorbiaceae). Am J Bot 100:857–866PubMedCrossRefGoogle Scholar
  13. Bradshaw JE, Bryan GJ, Ramsay G (2006) Genetic resources (including wild and cultivated Solanum species) and progress in their utilization in potato breeding. Potato Res 49:49–65CrossRefGoogle Scholar
  14. Bronson B (1966) Roots and the subsistence of the ancient Maya. Southwest J Anthropol 22(3):251–279CrossRefGoogle Scholar
  15. Brookes R (1763) The natural history of vegetables, LondonGoogle Scholar
  16. Camadro E, Cauhépé MA, Simon PW (2007) Geographical distribution of wild Daucus species in the natural grasslands of the Argentinian pampas. Genet Resour Crop Evol 54:855–863CrossRefGoogle Scholar
  17. Camadro EL, Cauhépé MA, Simon PW (2008) Compatibility relations between the edible carrot Daucus carota and D. pusillus, a related wild species from the Argentinian Pampas. Euphytica 159:103–109CrossRefGoogle Scholar
  18. Castañeda-Álvarez NP, de Haan S, Juárez H, Khoury CK, Achicanoy HA, Sosa CC et al (2015) Ex situ conservation priorities for the wild relatives of potato (Solanum L. Section Petota). PLoS One 10(4):e0122599. https://doi.org/10.1371/journal.pone.0122599. pmid:2592371CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cheng Y, Zhou WG, Gao CF, Lan K, Gao Y, Wu QY (2009) Biodiesel production from Jerusalem artichoke (Helianthus tuberosus L.) tuber by heterotrophic microalgae Chlorella protothecoides. J Chem Technol Biotechnol 84(5):777–781CrossRefGoogle Scholar
  20. CIAT (2006) CIAT Annual Report 2006. CIAT, Cali, ColombiaGoogle Scholar
  21. Dempewolf H, Baute G, Anderson J, Kilian B, Smith C, Guarino L (2017) Past and future use of wild relatives in crop breeding. Crop Sci. https://doi.org/10.2135/cropsci2016.10.0885
  22. ECOS (2016) Environmental conservation online system. US Fish & Wildlife Service. https://ecos.fws.gov/ecp/. Accessed 29 Aug 2017
  23. FAO (2014) FAOstat Retrieved Nov, 2016Google Scholar
  24. Ghirardini MP, Carli M, Del Vecchio N, Rovati A, Cova O et al (2007) The importance of a taste. A comparative study on wild food plant consumption in twenty-one local communities in Italy. J Ethnobiol Ethnomed 3(1):22PubMedPubMedCentralCrossRefGoogle Scholar
  25. Global Crop Diversity Trust (2014) GENESYS. Available: http://www.croptrust.org/content/global-information-system. Accessed 18 Jan 2017
  26. Grzebelus D, Baranski R, Spalik K, Allender C, Simon PW (2011) Daucus. In: Wild crop relatives: genomic and breeding resources. Springer, Berlin/Heidelberg, pp 91–113CrossRefGoogle Scholar
  27. Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13CrossRefGoogle Scholar
  28. Harlan JR, de Wet JM (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517CrossRefGoogle Scholar
  29. Hershey C (2010) A global conservation strategy for cassava (Manihot esculenta) and wild Manihot species. 98. Available from http://www.croptrustorg/documents/cropstrategies/cassava%20strategypdf. Accessed Dec 2010
  30. Hodgkin T, Hajjar R (2008) Using crop wild relatives for crop improvement: trends and perspectives. In: Maxted N, Ford-Lloyd BV, Kell SP, Iriondo J, Dulloo E, Turok J (eds) Crop wild relative conservation and use. CABI Publishing, Wallingford, pp 535–548Google Scholar
  31. Hoes JA, Putt ED, Enns H (1973) Resistance to Verticillium wilt in collections of wild helianthus in North America. Phytopathology 63:1517–1520CrossRefGoogle Scholar
  32. Hulke BS, Miller JF, Gulya TJ, Vick BA (2010) Registration of the oilseed sunflower genetic stocks HA 458, HA 459, and HA 460 possessing genes for resistance to downy mildew. J Plant Regist 4:1–5CrossRefGoogle Scholar
  33. Inglis D, Brown CR, Gundersen BG, Porter LD, Miller JS, Johnson DA, Lozoya-Saldafia H, Haynes KG (2007) Assessment of Solanum hougasii in Washington and Mexico as a source of resistance to late blight. Am J Potato Res 84:217–228CrossRefGoogle Scholar
  34. Iorizzo M, Senalik DA, Ellison SL, Grzebelus D, Cavagnaro PF, Allender C, Brunet J, Spooner DM, Van Deynze A, Simon PW (2013) Genetic structure and domestication of carrot (Daucus carota subsp. sativus) (Apiaceae). Am J Bot 100:930–938PubMedCrossRefGoogle Scholar
  35. Iorizzo M, Ellison S, Senalik D, Zeng P, Satapoomin P, Huang J, Bowman M, Iovene M, Sanseverino W, Cavagnaro P, Yildiz M, Macko-Podgórni A, Moranska E, Grzebelus E, Grzebelus D, Ashrafi H, Zheng Z, Cheng S, Spooner D, Van Deynze A, Simon P (2016) A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nat Genet 48:657–666PubMedCrossRefGoogle Scholar
  36. Iwanaga M (1988) Use of wild germplasm for sweet potato breeding. In: Exploration, maintenance, and utilization of sweetpotato genetic resources. International Potato Center, Lima, pp 199–210Google Scholar
  37. Jan CC, Chandler JM (1988) Registration of powdery mildew resistant sunflower germplasm pool, PM 1. Crop Sci 28:1039–1040Google Scholar
  38. Jan CC, Fernandez-Martinez JM, Ruso J, Muñoz-Ruz J (2002) Registration of four sunflower germplasms with resistance to Orobanche cumana Race F. Crop Sci 42:2217–2218CrossRefGoogle Scholar
  39. Jan CC, Quresh Z, Gulya TJ (2004) Registration of seven rust resistant sunflower germplasms. Crop Sci 44:1887–1888CrossRefGoogle Scholar
  40. Jan CC, Miller JF, Seiler GJ, Fick GN (2006) Registration of one cytoplasmic male sterile and two fertility restoration sunflower genetic stocks. Crop Sci 46:1835–1835CrossRefGoogle Scholar
  41. Jansky S (2000) Breeding for disease resistance in potato. Plant Breed Rev 19:69–156Google Scholar
  42. Jansky SH, Dempewolf H, Camadro EL, Simon R, Zimnoch-Guzowska E, Bisognin DA, Bonierbale M (2013) A case for crop wild relative preservation and use in potato. Crop Sci 53:746–754CrossRefGoogle Scholar
  43. Jennings DL (1995) Cassava, Manihot esculenta (Euphorbiaceae). In: Smartt J, Simmonds NW (eds) Evolution of crop plants. Longman Group, Harlow, pp 128–132Google Scholar
  44. Jyoti J, Brewer GJ (1999) Resistance in sunflower and interaction with Bacillus thuringiensis for control of banded sunflower moth (Lepidoptera: Tortricidae). J Econ Entomol 92:1230–1233PubMedCrossRefGoogle Scholar
  45. Kane NC, Rieseberg LH (2007) Selective sweeps reveal candidate genes for adaptation to drought and salt tolerance in common sunflower, Helianthus annuus. Genetics 175:1823–1834PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kantar MB, Baute GJ, Bock DG, Rieseberg LH (2014) Genomic variation in Helianthus: learning from the past and looking to the future. Brief Funct Genomics 13:328–340PubMedCrossRefGoogle Scholar
  47. Kantar, MB, Sosa, CC, Khoury, CK, Castañeda-Álvarez, NP, Achicanoy, HA, Bernau, V, Kane, NC, Marek, L, Seiler, G, Rieseberg, LH. (2015). Ecogeography and utility to plant breeding of the crop wild relatives of sunflower (Helianthus annuus L.). Frontiers in plant science, 6, 841Google Scholar
  48. Kays SJ, Nottingham SF (2008) Biology and chemistry of Jerusalem artichoke Helianthus tuberosus L. CRC Press, Boca Raton, FLGoogle Scholar
  49. Khoury CK, Heider B, Castañeda-Álvarez NP, Achicanoy HA, Sosa CC, Miller RE, Scotland RW, Wood JR, Rossel G, Eserman LA, Jarret RL, Yencho GC, Bernau V, Henry Juarez H, Sotelo S, Stef de Haan S, Struik PC (2015) Distributions, ex situ conservation priorities, and genetic resource potential of crop wild relatives of sweetpotato [Ipomoea batatas (L.) Lam., I. series Batatas]. Front Plant Sci 6:251PubMedPubMedCentralCrossRefGoogle Scholar
  50. Ladio AH (2001) The maintenance of wild edible plant gathering in a Mapuche community of Patagonia. Econ Bot 55(2):243–254CrossRefGoogle Scholar
  51. Lebot V (2010) Sweet potato. In: Bradshaw JE (ed) Handbook of plant breeding, root and tuber crops. Springer, New York, pp 97–125CrossRefGoogle Scholar
  52. Lexer C, Welch ME, Durphy JL, Rieseberg LH (2003) Natural selection for salt tolerance quantitative trait loci (QTLs) in wild sunflower hybrids: implications for the origin of Helianthus paradoxus, a diploid hybrid species. Mol Ecol 12:1225–1235PubMedCrossRefGoogle Scholar
  53. Lexer C, Lai Z, Rieseberg LH (2004) Candidate gene polymorphisms associated with salt tolerance in wild sunflower hybrids: implications for the origin of Helianthus paradoxus, a diploid hybrid species. New Phytol 161:225–233PubMedPubMedCentralCrossRefGoogle Scholar
  54. Lim TK (2016) Pachyrhizus erosus. In: Edible medicinal and non-medicinal plants. Springer Netherlands, Dordrecht, pp 465–481CrossRefGoogle Scholar
  55. Liu Z, Halterman D (2009) Different genetic mechanisms control foliar and tuber resistance to Phytophthora infestans in wild potato Solanum verrucosum. Am J Potato Res 86(6):476CrossRefGoogle Scholar
  56. Ma XY, Zhang LH, Shao HB, Xu G, Zhang F, Ni FT, Brestic M (2011) Jerusalem artichoke (Helianthus tuberosus), a medicinal salt-resistant plant has high adaptability and multiple-use values. J Med Plant Res 5:1272–1279Google Scholar
  57. McDonald JA, Austin DF (1990) Changes and additions in Ipomoea section Batatas (Convolvulaceae). Brittonia 42(2):116–120CrossRefGoogle Scholar
  58. McGrath JM, Panella L, Frese L (2011) Beta. In: Wild crop relatives: genomic and breeding resources. Springer, Berlin/Heidelberg, pp 1–28Google Scholar
  59. Miller JF, Al-Khatib K (2002) Registration of imidazolinone herbicide-resistant sunflower maintainer (HA 425) and fertility restorer (RHA 426 and RHA 427) germplasms. Crop Sci 42:988–989CrossRefGoogle Scholar
  60. Miller JF, Gulya TJ (1988) Registration of six downy mildew resistant sunflower germplasm lines. Crop Sci 28:1040–1041CrossRefGoogle Scholar
  61. Miller JF, Gulya TJ (1999). Registration of eight Sclerotinia-tolerant sunflower germplasm lines. Crop sci, 39(1):301–302Google Scholar
  62. Miller JF, Seiler GJ (2003) Registration of five oilseed maintainer (HA 429–HA 433) sunflower germplasm lines. Crop Sci 43:2313–2314CrossRefGoogle Scholar
  63. Narina SS, Jasti M, Buyyarapu R, Bhattacharjee R (2011) Manihot. In: Wild crop relatives: genomic and breeding resources. Springer, Berlin/Heidelberg, pp 133–155CrossRefGoogle Scholar
  64. Nassar NM (1978) Conservation of the genetic resources of cassava (Manihot esculenta) determination of wild species localities with emphasis on probable origin. Econ Bot 32(3):311–320CrossRefGoogle Scholar
  65. Nassar NM, Hashimoto DYC, Fernandes SDC (2008) Wild Manihot species: botanical aspects, geographic distribution and economic value. Genet Mol Res 7(1):16–28PubMedCrossRefGoogle Scholar
  66. NatureServe (2017) NatureServe Explorer: An online encyclopedia of life [web application]. Version 7.1. NatureServe, Arlington, Virginia. Available http://explorer.natureserve.org. Accessed 10 Aug 2017
  67. Nimmakayala P, Vajja G, Reddy UK (2011) Ipomoea. In: Wild crop relatives: genomic and breeding resources. Springer, Berlin/Heidelberg, pp 123–132CrossRefGoogle Scholar
  68. Olsen KM, Schaal BA (1999) Evidence on the origin of cassava: Phylogeography of Manihot esculenta. Proc Natl Acad Sci USA 96:5586–5591PubMedCrossRefGoogle Scholar
  69. Onokpise OU, Wutoh JG, Ndzana X, Tambong JT, Meboka MM, Sama, AE, Nyochembeng L, Aguegia A, Nzietchueng S, Wilson JG, Burns M (1999) Evaluation of macabo cocoyam germplasm in Cameroon. Perspectives on new crops and new uses, 394–396Google Scholar
  70. Onwueme IC (2002) Cassava in Asia and the Pacific. In: Hillocks RJ, Thresh JM, Bellotti A (eds) Cassava: biology, production and utilization. CABI, Wallingford, pp 1–16Google Scholar
  71. Panella L, Lewellen R (2007) Broadening the genetic base of sugar beet: introgression from wild relatives. Euphytica 154:383–400CrossRefGoogle Scholar
  72. Pío-León, JF, Delgado-Vargas, F, León-de la Luz, JL, Ortega-Rubio, A (2017). Prioritizing wild edible plants for potential new crops based on deciduous forest traditional knowledge by a rancher community. Bot Sci, 95(1):47–59Google Scholar
  73. Piperno DR, Holst I (1998) The presence of starch grains on prehistoric stone tools from the humid neotropics: indications of early tuber use and agriculture in Panama. J Archaeol Sci 25:765–776CrossRefGoogle Scholar
  74. Piperno DR, Ranere AJ, Holst I, Hansell P (2000) Starch grains reveal early root crop horticulture in the Panamanian tropical forest. Nature 407:894–897PubMedCrossRefGoogle Scholar
  75. Prescott-Allen R, Prescott Allen C (1986) The first resource: wild species in the North American economy. Yale University, New HavenCrossRefGoogle Scholar
  76. Qi LL, Seiler GJ, Vick BA, Gulya TJ (2012) Genetics and mapping of the R 11 gene conferring resistance to recently emerged rust races, tightly linked to male fertility restoration, in sunflower (Helianthus annuus L.). Theor Appl Genet 125:921–932PubMedCrossRefGoogle Scholar
  77. Quero-Garcia, J., Ivancic, A., & Lebot, V. (2010). Taro and cocoyam. In Root and Tuber Crops (pp. 149–172). Springer, New York, NYGoogle Scholar
  78. Ramsay G, Bryan G (2011) Solanum. In: Wild crop relatives: genomic and breeding resources. Springer, Berlin/Heidelberg, pp 259–271CrossRefGoogle Scholar
  79. Reddy PP (2015) Yam Bean, Pachyrhizus erosus. In: Plant protection in tropical root and tuber crops. Springer, New Delhi, pp 267–279CrossRefGoogle Scholar
  80. Rogers CE, Thompson TE, Seiler GJ (1982) Sunflower species of the United States. National Sunflower Association, Bismarck, pp 1–75Google Scholar
  81. Rogers CE, Thompson TE, Seiler GJ (1984) Registration of three Helianthus germplasms for resistance to the sunflower moth. Crop Sci 24:212–213CrossRefGoogle Scholar
  82. Ross H (1979) Wild species and primitive cultivars as ancestors of potato varieties. In: Zeven AC, van Harten AM (eds) Proceedings of the conference broadening the genetic base of crops. Centre for Agricultural Publishing and Documentation, Wageningen, pp 237–245Google Scholar
  83. Sakamoto S (1976) Breeding of a new sweet potato variety, Minamiyutaka, by the use of wild relatives. Jpn Agric Res Quest 10:183–186Google Scholar
  84. Seiler GJ (1991a) Registration of 15 interspecific sunflower germplasm lines derived from wild annual species. Crop Sci 31:1389–1390CrossRefGoogle Scholar
  85. Seiler GJ (1991b) Registration of 13 downy mildew tolerant interspecific sunflower germplasm lines derived from wild annual species. Crop Sci 31:1714–1716Google Scholar
  86. Seiler GJ (1994) Progress report of the working group of the evaluation of wild Helianthus species for the period 1991 to 1993. Helia 17:87–92Google Scholar
  87. Seiler GJ (2000) Registration of 10 interspecific germplasms derived from wild perennial sunflower. Crop Sci 40:587–588CrossRefGoogle Scholar
  88. Seiler GJ, Campbell LG (2004) Genetic variability for mineral element concentrations of wild Jerusalem artichoke forage. Crop Sci 44(1):289–292CrossRefGoogle Scholar
  89. Seiler GJ, Campbell LG (2006) Genetic variability for mineral concentration in the forage of Jerusalem artichoke cultivars. Euphytica 150:281–288CrossRefGoogle Scholar
  90. Shiotani I, Huang ZZ, Sakamoto S, Miyazaki T (1991) The role of the wild Ipomoea trifida germplasm in sweet potato breeding. Symp Trop Root Crops Dev Econ 380:388–398Google Scholar
  91. Simon PW (2000) Domestication, historical development, and modern breeding of carrot. Plant Breed Rev 19:157–190Google Scholar
  92. Solis RS, Haas J, Creamer W (2001) Dating Caral, a preceramic site in the Supe Valley on the central coast of Peru. Science 292:723–726PubMedCrossRefGoogle Scholar
  93. Spooner DM, Bamberg JB (1994) Potato genetic resources: sources of resistance and systematics. Am Potato J 71:325–337CrossRefGoogle Scholar
  94. Spooner DM, McLean K, Ramsay G, Waugh R, Bryan GJ (2005) A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. PNAS 102:14694–14699PubMedCrossRefGoogle Scholar
  95. Srivastava A, Bhardwaj V, Singh BP, Khurana SP (2016) Potato diversity and its genetic enhancement. In: Gene pool diversity and crop improvement. Springer International Publishing, Cham, pp 187–226CrossRefGoogle Scholar
  96. Suszkiw J (2009) Scientists use old, new tools to develop pest-resistant potato. Agric Res 57:11–12Google Scholar
  97. Tambong JT, Ndzana JG, Wutoh JG, Dadson R (1997) Variability and germplasm loss in the Cameroon national collection of cocoyam (Xanthosoma sagittifolium Schott (L.)). Plant Genet Resour Newsl 112:49–54Google Scholar
  98. Thieme R, Rakosy-Tican E, Gavrilenko T, Antonova O, Schubert J, Nachtigall M, Heimbach U, Thieme T (2008) Novel somatic hybrids (Solanum tuberosum L. + Solanum tarnii) and their fertile BC1 progenies express extreme resistance to potato virus Y and late blight. Theor Appl Genet 116:691–700PubMedCrossRefGoogle Scholar
  99. USDA, ARS, National Plant Germplasm System (2017) Germplasm Resources Information Network (GRIN Global) Database National Germplasm Resources Laboratory, Beltsville, MD. https://www.ars-grin.gov/npgs/acc/acc_queries.html. Accessed 18 Jan 2017
  100. Velasco L, Pérez-Vich B, Yassein AA, Jan CC, Fernández-Martínez JM (2012) Inheritance of resistance to sunflower broomrape (Orobanche cumana Wallr.) in an interspecific cross between Helianthus annuus and Helianthus debilis subsp. tardiflorus. Plant Breed 131:220–221CrossRefGoogle Scholar
  101. Whelan EDP, Dedio W (1980) Registration of sunflower germplasm composite crosses CMG-1, CMG-2, and CMG-3. Crop Sci 20:832–832CrossRefGoogle Scholar
  102. Yang Y, Guan S, Zhai H, He S, Liu Q (2009) Development and evaluation of a storage root-bearing sweet potato somatic hybrid between Ipomoea batatas (L.) Lam. and I. triloba L. Plant Cell Tissue Org Cult (PCTOC) 99(1):83–89CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Justin E. Anderson
    • 1
  • Alexandra Campbell
    • 2
  • Michael B. Kantar
    • 2
    Email author
  1. 1.Department of Molecular Genetics and Physiology of PlantsRuhr University BochumBochumGermany
  2. 2.Tropical Plant and Soil ScienceUniversity of Hawaii at ManoaHonoluluUSA

Personalised recommendations