Advertisement

Wild Chile Pepper (Capsicum L.) of North America

  • Derek W. Barchenger
  • Paul W. Bosland
Chapter

Abstract

Chile pepper (Capsicum L. sp.) is an increasingly important crop worldwide because of its various culinary and medicinal uses. Despite a diverse primary gene pool, sources of resistance or tolerance to many chile pepper pests and diseases are rare. Novel sources of resistance exist within the broader Capsicum wild relative gene pool. Although widely distributed as a group, the wild relatives native to North America (C. annuum var. glabriusculum (Dunal) Heiser and Pickersgill, C. frutescens (L.), and C. rhomboideum (Dunal) Kuntze) are not well studied. Their overall lack of phenotypic characterization is likely the largest contributor to the underutilization of these important sources of genetic variability, followed by limited access to plant material, pre- or post-zygotic barriers to fertilization, and linkage drag. Both in situ and ex situ conservation efforts of these species are limited, and one species, C. lanceolatum (Greenm.) C. V. Morton and Standl., is now extinct in North America as a result. Increased awareness, financial support and policy changes to enable greater collection and storage would facilitate better characterization and evaluation of these species and increase the potential for their incorporation into modern breeding programs.

Keywords

Capsicum Ex situ conservation In situ conservation Genetic resources 

References

  1. Aguilar-Melendez A, Morrell PL, Roose ML, Kim SC (2009) Genetic diversity and structure in semiwild and domesticated chiles (Capsicum annuum; Solanaceae) from Mexico. Amer J Bot 96:1190–1202CrossRefGoogle Scholar
  2. Almanza-Enríquez JG (1998) Estudios ecofisiológicos, métodos de propagación y productividad del “chile piquín” (Capsicum annum L. var aviculare Dierb.). MS Thesis, Universidad Autónoma de Nuevo León, Monterrey, N.L., MéxicoGoogle Scholar
  3. Aloni B, Karni L, Zaidman Z, Schaffer AA (1997) The relationship between sucrose supply, sucrose-cleaving enzymes, and flower abortion in pepper. Ann Bot 79:601–605CrossRefGoogle Scholar
  4. Bai Y, Pavan S, Zheng Z, Zappel NF, Reinstadler A, Lotti C, De Giovanni C, Ricciardi L, Lindhout P, Visser R, Theres K, Ranstruga R (2008) Naturally occurring broad-spectrum powdery mildew resistance in Central American tomato accession is caused by loss of MLO function. Mol Plant Microbe Int 21:30–39CrossRefGoogle Scholar
  5. Bañuelos N, Salido PL, Gardea A (2008) Etnobotánica del chiltepin. Pequeño gran señor en la cultura de los sonorenses. Estud Soc 16:178–205Google Scholar
  6. Barchenger DW, Bosland PW (2016) Exogenous applications of capsaicin inhibit seed germination of Capsicum annuum. Sci Hort 203:29–31CrossRefGoogle Scholar
  7. Bethke PC, Drew MC (1992) Stomatal and nonstomatal components to inhibition of photosynthesis in leaves of Capsicum annuum during progressive exposure to NaCl salinity. Plant Physiol 99:219–226CrossRefGoogle Scholar
  8. Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC156979/
  9. Bosland PW (2000) Sources of curly top virus resistance in Capsicum. Hortscience 35:1321–1322CrossRefGoogle Scholar
  10. Bosland PW, Gonzalez MM (2000) The rediscovery of Capsicum lanceolatum (Solanaceae) and the importance of nature reserves in preserving cryptic biodiversity. Biodivers Conserv 9:1391–1397CrossRefGoogle Scholar
  11. Bosland PW, Votava EJ (2012) Peppers: vegetable and spice capsicums, 2nd edn. CAB International, OxfordshireCrossRefGoogle Scholar
  12. Breedlove DW (1986) Flora de Chiapas. Listado Florist. Mexico 4Google Scholar
  13. Carlo TA, Tewksbury JJ (2014) Directness and tempo of avian seed dispersal increases emergence of wild chiltepins in desert grasslands. J Ecol 102:248–255CrossRefGoogle Scholar
  14. Carrizo GC, Barfuss MHJ, Sehr EM, Barboza GE, Samuel R, Moscone EA, Ehrendorfer F (2016) Phylogenetic relationships, diversification, and expansion of chili peppers (Capsicum, Solanaceae). Ann Bot 118:35–51CrossRefGoogle Scholar
  15. Cheng J, Zhao Z, Li B, Qin C, Wu Z, Trejo-Saavedra DL, Luo Z, Cui J, Rivera-Bustamante RF, Li S, Hu K (2016) A comprehensive characterization of simple sequence repeats in pepper genomes provides valuable resources for marker development in Capsicum. Sci Rep 6. https://doi.org/10.1038/srep18919
  16. Csillary G (1983) A contribution to the list of the possible interspecific crosses in Capsicum. Eucarpia Vth Meeting on Genetics and Breeding of Capsicum and Eggplant:15–17Google Scholar
  17. Davenport WA (1970) Progress report on the domestication of Capsicum (chile peppers). Proc Assoc Am Geogr 2:46–47Google Scholar
  18. Deli J, Molnar P, Toth G (2001) Carotenoid composition in the fruits of red paprika (Capsicum annuum var. lycopersiciforme rubrum) during ripening; biosynthesis of carotenoids in red paprika. J Agr Food Chem 49:1517–1523CrossRefGoogle Scholar
  19. Emboden WA Jr (1961) A preliminary study of the crossing relationships of Capsicum baccatum. Butler Univ Bot Stud 14:1–5Google Scholar
  20. Eshbaugh WH (1970) A biosystematic and evolutionary study of Capsicum baccatum (Solanaceae). Brittonia 22:31–43CrossRefGoogle Scholar
  21. Eshbaugh WH (1980) The taxonomy of the genus Capsicum (Solanaceae). Phytologia 47:153–166CrossRefGoogle Scholar
  22. Feuillet C, Langridge P, Waugh R (2008) Cereal breeding takes a walk on the wild side. Trends Genet 24:24–32CrossRefGoogle Scholar
  23. Gandonou JM, Waliczek TM (2013) An analysis of the recent trends in U.S. chile pepper production, consumption and imports. J Food Agr Environ 11:361–367Google Scholar
  24. Gentry JL Jr, Standley PC (1974) Flora of Guatemala Part X. Fieldiana Bot. 24Google Scholar
  25. Gonzalez M, Bosland PW (1991) Strategies for stemming genetic erosion of Capsicum germplasm in the Americas. Diversity 7:52–53Google Scholar
  26. González-Cortés N, Jiménez-Vera R, Guerra-Baños EC, Silos-Espino H, de la Cruz EP (2015) Germinación del chile amashito (Capsicum annuum L. var. glabriusculum) en el sureste mexicano. Revista Mexicana de Ciencias Agrícolas 11:2211–2218Google Scholar
  27. González-Jara P, Moreno-Letelier A, Fraile A, Piñero D, García-Arenal F (2011) Impact of human management on the genetic variation of wild pepper, Capsicum annuum var. glabriusculum. PLoS One 6(12):e28715. https://doi.org/10.1371/journal.pone.0028715 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Guzman I, Bosland PW, O’Connell M (2010) Heat, color, and flavor compounds in Capsicum fruits. In: Gang DR (ed) The biological activity of phytochemicals. Springer, New York, pp 109–126Google Scholar
  29. Hayano-Kanashiro C, Gámez-Meza N, Medina-Juárez LÁ (2016) Wild pepper Capsicum annuum L. var. glabriusculum: taxonomy, plant morphology, distribution, genetic diversity, genome sequencing, and phytochemical compounds. Crop Sci 56:1–11CrossRefGoogle Scholar
  30. Heiser CB Jr (1969) Nightshades, the paradoxical plants. WH Freeman, San FransiscoGoogle Scholar
  31. Heiser CB Jr, Smith PG (1948) Observations on another species of cultivated peppers, Capsicum pubescens R & P. Proc Amer Soc Hort Sci 52:331–335Google Scholar
  32. Hirsch CN, Hirsch CD, Fletcher K, Coombsm J, Zarka D, Van Deynze A, De Jong W, Velleux RE, Jansky S, Bethka P, Douches DS, Buell CR (2013) Retrospective view of north American potato (Solanum tuberosum L.) breeding in the twentieth and twenty-first centuries. G3 3:1003–1013CrossRefGoogle Scholar
  33. Jordt SE, Julius D (2002) Molecular basis for species-specific sensitivity to “hot” chili peppers. Cell 108:421–430CrossRefGoogle Scholar
  34. Kamvorn W, Techawongstein S, Techawongstien S, Theerakulpisut P (2014) Compatibility of inter-specific crosses between Capsicum chinense Jacq. and Capsicum baccatum L. at different fertilization stages. Sci Hort 179:9–15CrossRefGoogle Scholar
  35. Kraft KH, Luna-Ruiz J d J, Gepts P (2013) A new collection of wild populations of Capsicum in Mexico and the southern United States. Genet Res Crop Evol 60:225–232CrossRefGoogle Scholar
  36. Kraft KH, Brown CH, Nabhan GP, Luedeling E, Luna Ruiz J d J, Coppens d’Eeckenbrugge G, Hijmans RJ, Gepts P (2014) Multiple lines of evidence for the origin of domesticated chili pepper, Capsicum annuum, in Mexico. Proc Natl Acad Sci 111:6165–6170CrossRefGoogle Scholar
  37. Lin T, Zhu G, Zhang J, Xu X, Yu Q, Zheng Z, Zhang Z, Lun Y, Shuai L, Wang Z, Huang Z, Li J, Zhang C, Wang T, Zhang Y, Wang A, Zhang Y, Lin K, Li C, Xiong G, Xue Y, Mazzucato A, Causse M, Fei Z, Giovannoni JJ, Chetelat RT, Zamir D, Stadler T, Li J, Ye Z, Du Y, Huang S (2014) Genomic analyses provide insights into the history of tomato breeding. Nature 46:1220–1226Google Scholar
  38. Loaiza-Figueroa F, Ritland K, Laborde Cancino JA, Tanksley SD (1989) Patterns of genetic variation of the genus Capsicum (Solanaceae) in Mexico. Plant Syst Evol 165:159–188CrossRefGoogle Scholar
  39. López-Aguilar R, Medina- Hernández D, Ascencio-Valle F, Troyo-Dieguez E, Nieto-Garibay A, Arce-Montoya M, Larrinaga-Mayoral JA, Gómez-Anduro GA (2012) Differential responses of Chiltepin (Capsicum annuum var. glabriusculum) and Poblano (Capsicum annuum var. annuum) hot peppers to salinity at the plantlet stage. Afr J Biotech 11:2642–4653Google Scholar
  40. Miranda Zarazúa H, Miartín-Rivera MH, Ibarra Flores FA, Robles Parra J, Villarruel Sahagún L (2007). El chiltepín silvestreen la cuenca del río Sonora. http://biblioteca.inifap.gob.mx:8080/xmlui/handle/123456789/3496
  41. Molina Rosito A (1975) Enumeración de las plantas de Honduras. Ceiba 19:1–118. https://bdigital.zamorano.edu/bitstream/11036/3815/1/01.pdf
  42. Mongkolporn D, Taylor PWJ (2011) Capsicum. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Springer, Berlin-HeidelbergGoogle Scholar
  43. Montes H (2010) Compilation and analysis of existing information on the species of the genus Capsicum grown and cultivated in Mexico. Final report. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental Bajío, Celaya, Gto. MéxicoGoogle Scholar
  44. Nabhan G (1990) Conservationists and forest services join forces to save wild chiles. Diversity 6:47–48Google Scholar
  45. Nabhan G, Slater M, Yarger L (1990) New crops small farmers in marginal lands? Wild chiles as a case study. In: Altieri MA, Hecht SB (eds) Agroecology and small farm development. CRC Press, Boca Raton, pp 19–34Google Scholar
  46. NatureServe (2017) NatureServe Explorer: an online encyclopedia of life [web application]. Version 7.1. NatureServe, Arlington, Virginia. http://explorer.natureserve.org. Accessed 16 June 2017
  47. Ohnuki K, Haramizu S, Oki K, Watanabe T, Yazawa S, Fushiki T (2001) Administration of capsiate, a non-pungnet capsaicin analog, promotes energy metabolism and suppresses body fat accumulation in mice. Biosci Biotech Biochem 65:2735–2740CrossRefGoogle Scholar
  48. Oyama K, Hernandez-Verdugo S, Sanchez C, Gonzalez-Rodrigues A, Sanchez-Pena P, Garzon-Tiznado JA, Casas A (2006) Genetic structure of wild and domesticated population of Capsicum annum (Solanaceae) from northwestern Mexico analyzed by RAPDs. Gen Res Crop Evol 53:553–562CrossRefGoogle Scholar
  49. Pagán I, Betancourt M, de Miguel J, Piñero D, Fraile A, García-Arenal F (2010) Genomic and biological characterization of chiltepin yellow mosaic virus, a new tymovirus infecting Capsicum annuum var. aviculare in Mexico. Arch Virol 155:675–684CrossRefGoogle Scholar
  50. Pagán I, González-Jara P, Moreno-Letelier A, Rodelo-Urrego M, Fraile A, Piñero D, García-Arenal F (2012) Effect of biodiversity changes in disease risk: exploring disease emergence in a plant-virus system. PLoS Path 8(7):e1002796. https://doi.org/10.1371/journal.ppat.1002796 CrossRefGoogle Scholar
  51. Paran I, van der Knaap E (2007) Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper. J Exp Bot 58:3841–3852CrossRefGoogle Scholar
  52. Perramond E (2005) The politics of ecology: local knowledge and wild Chili collection in Sonora, Mexico. J Lat Am Geogr 4:59–75. https://doi.org/10.1353/lag.2005.0025 CrossRefGoogle Scholar
  53. Peterson PA (1958) Cytoplasmically inherited male sterility in Capsicum. Amer Nat 92:111–119CrossRefGoogle Scholar
  54. Pickersgill B (1966) The variability and relationships of Capsicum chinense Jacq. PhD. Dissertation, Indiana University, BloomingtonGoogle Scholar
  55. Pickersgill B (1971) Relationships between weedy and cultivated forms in some species of chili peppers (genus Capsicum). Evolution 25:683–691PubMedGoogle Scholar
  56. Pickersgill B (1980) Some aspects of interspecific hybridization. In: Capsicum. Unpublished and preliminary report at the IVth Eucarpia Capsicum working group meetings in Wageningen, The NetherlandsGoogle Scholar
  57. Pickersgill B (1997) Genetic resources and breeding of Capsicum spp. Euphytica 96:129–133CrossRefGoogle Scholar
  58. Pickersgill B (2007) Domestication of plants in the Americas: insights from Mendelian and molecular genetics. Ann Bot 100:925–940CrossRefGoogle Scholar
  59. Prado-Urbina G, Lagunes-Espinoza LDC, García-López E, Bautista-Muñoz CDC, Camacho-Chiu W, Mirafuentes F, Aguilar-Rincón VH (2015) Germinación de semillas de chiles silvestres en respuesta a tratamientos pre-germinativos. Ecosistemas Recursos Agropecuarios 2:139–149Google Scholar
  60. Qin C, Yub C, Shena Y, Fang X, Chen L, Mind J, Cheng J, Zhao S, Xu M, Luo Y, Yang Y, Wu Z, Mao L, Wu H, Ling-Hu C, Zhou H, Lin H, González-Morales S, Trejo-Saavedra DL, Tian H, Tang X, Zhao M, Huang Z, Zhou A, Yao X, Cui J, Li W, Chen Z, Feng Y, Niu Y, Bi S, Yang X, Li W, Cai H, Lu X, Montes-Hernández S, Leyva-González MA, Xiong Z, He X, Bai L, Tan S, Tang X, Liu D, Liu J, Zhang S, Chen M, Zhang L, Zhang L, Zhang Y, Liao W, Zhang Y, Wang M, Lv X, Wen B, Liu H, Luan H, Zhang Y, Yang S, Wang X, Xu J, Li X, Li S, Wang J, Palloix A, Bosland PW, Li Y, Krogh A, Rivera-Bustamante RF, Herrera-Estrella L, Yin Y, Yu J, Hu K, Zhang Z (2014) Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc Natl Acad Sci US 111:5135–5140CrossRefGoogle Scholar
  61. Rakha M, Hanson P, Ramasamy S (2017) Identification of resistance to Bemisia tabaci Genn. in closely related wild relatives of cultivated tomato based on trichome type analysis and choice and no-choice assays. Gen Resour Crop Evol 64:247–260CrossRefGoogle Scholar
  62. Rehrig WZ, Ashrafi H, Hill T, Prince J, Van Deynze A (2014) CaDMR1 cosegregates with QTL Pc5.1 for resistance to Phytophthora capsici in pepper (Capsicum annuum). Plant Genome 7. https://doi.org/10.3835/plantgenome2014.03.0011
  63. Samuels J (2015) Biodiversity of food species of the Solanaceae family: a preliminary taxonomic inventory of subfamily Solanoideae. Resources 4:277–322CrossRefGoogle Scholar
  64. Sanders DC, Kirk HJ, van der Brink C (1980) Growing degree days in North Carolina. AG-236. North Carolina Agricultural Extension ServiceGoogle Scholar
  65. Sandoval-Rangel A (2011) El cultivo del chile piquín y la influencia de los ácidos orgánicos en el crecimiento, productividad y calidad nutricional. Doctoral Dissertation, Universidad Autónoma de Nuevo LeónGoogle Scholar
  66. Shifriss C (1997) Male sterility in pepper (Capsicum annuum L.). Euphytica 93:83–88CrossRefGoogle Scholar
  67. Smith CE (1967) Plant remains. In: Byes DS (ed) The prehistoric history of the Tehuacan Valley vol. 1. Environment and subsistence. University of Texas Press, Austin, pp 220–225Google Scholar
  68. Standley PC, Steyermark JA (1940) Studies of Central American plants. p. 272–273. In: Publications of Field museum of natural history. Bot. Series 22. Chicago, IllinoisGoogle Scholar
  69. Tewksbury JJ, Nabhan GP (2001) Seed dispersal: directed deterrence by capsaicin in chillies. Nature 412:403–404CrossRefGoogle Scholar
  70. Tewksbury JJ, Nabhan GP, Norman D, Suzan H, Tuxill J, Donovan J (1999) In situ conservation of wild chiles and their biotic associations. Conserv Biol 13:98–107CrossRefGoogle Scholar
  71. Tong N, Bosland PW (1999) Capsicum tovarii, a new member of the Capsicum baccatum complex. Euphytica 109:71–77CrossRefGoogle Scholar
  72. Villalon-Mendoza H, Medina-Martinez T, Ramirez-Meraz M, Solis Urbina SE, Maiti R (2014) Factors influencing the price of chile piquin wild chili (Capsicum annuum L. var. glabriusculum) of north-east Mexico. Int J Bioresour Stress Manag 5:128–131CrossRefGoogle Scholar
  73. Votava EJ, Nabhan GP, Bosland PW (2002) Genetic diversity and similarity revealed via molecular analysis among and within an in situ population and ex situ accessions of chiltepin (Capsicum annuum var. glabriusculum). Conserv Gen 3:123–129CrossRefGoogle Scholar
  74. Wei C, Chen J, Kuang H (2016) Dramatic number variation of R genes in Solanaceae species accounted for by a few R gene subfamilies. PLoS One. https://doi.org/10.1371/journal.pone.0148708
  75. World Health Organization (2009) Global prevalence of vitamin A deficiency in populations at risk 1995–2005: WHO global database on vitamin A deficiencyGoogle Scholar
  76. Wubs AM, Heuvelink E, Marcelis LFM (2009) Abortion of reproductive organs in sweet pepper (Capsicum annuum L.): a review. J Hort Sci Biotech 84:467–475CrossRefGoogle Scholar
  77. Yoon JB, Do JW, Yang DC, Park HG (2004) Interspecific cross compatibility among five domesticated species of Capsicum genus. J Korean Soc Hort Sci 45:324–329Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Derek W. Barchenger
    • 1
  • Paul W. Bosland
    • 2
  1. 1.The World Vegetable Center, ShanhuaTainanRepublic of China
  2. 2.Plant and Environmental SciencesNew Mexico State UniversityLas CrucesUSA

Personalised recommendations