Advertisement

Pumpkins, Squashes, and Gourds (Cucurbita L.) of North America

  • Heather Rose KatesEmail author
Chapter

Abstract

Pumpkins and squash (Cucurbita L. spp.) include six independently domesticated crop species and subspecies that are grown worldwide for their edible fruits and seeds and for ornamental interest. Because domesticated pumpkins and squashes can be crossed with each other and with diverse primary genepool relatives, contributions from Cucurbita crop wild relatives (CWR) have enabled the development of disease-resistant cultivars and represent a vast pool of untapped genetic variability underlying traits including drought tolerance and disease resistance. Even so, thorough evaluations of these wild species for agronomically important traits are limited. The 12 Cucurbita crop wild relatives of North America are more narrowly distributed than they were in the past because of the extinction of megafaunal dispersers and because of habitat loss, and the genetic diversity of wild Cucurbita species may be decreasing; one North American wild relative, C. okeechobeensis (Small) L. H. Bailey ssp. okeechobeensis, is nearly extinct, and some others are rare. Ex situ and in situ conservation of these species that includes phenotypic assessments are needed to better utilize the wealth of genetic resources available for pumpkin and squash crop improvement.

Keywords

Cucurbita Ex situ conservation In situ conservation Genetic resources 

References

  1. Adler LS, Hazzard RV (2009) Comparison of perimeter trap crop varieties: effects on herbivory, pollination, and yield in butternut squash. Environ Entomol 38(1):207–215. https://doi.org/10.1603/022.038.0126CrossRefPubMedGoogle Scholar
  2. Andres TC (1987) Cucurbita fraterna, the closest wild relative and progenitor of C. pepo. Cucurbit Genet Coop Rep 10:69–71Google Scholar
  3. Andres TC (1990) Theories on the biosystematics. In: Bates DM, Robinson RW, Jeffrey C (eds) Biology and utilization of the Curcurbitaceae. Cornell University Press, Ithaca, p 102Google Scholar
  4. Arriaga L, Huerta E, Lira-Saade R, Moreno E, Alarcon J (2006) Assessing the risk of releasing transgenic Cucurbita spp. in Mexico. Agric Ecosyst Environ 112(4):291–299. https://doi.org/10.1016/j.agee.2005.07.007CrossRefGoogle Scholar
  5. Bailey L (1943) Species of Cucurbita. Gentes Herbarum 6:266–322Google Scholar
  6. Bardaa S, Ben Halima N, Aloui F, Ben Mansour R, Jabeur H, Bouaziz M et al (2016) Oil from pumpkin (Cucurbita pepo L.) seeds: evaluation of its functional properties on wound healing in rats. Lipids Health Dis 15. https://doi.org/10.1186/s12944-016-0237-0
  7. Bemis WP, Whitaker TW (1969) The Xerophytic Cucurbita of northwestern Mexico and southwestern United States. Madrono 20(2):33–41Google Scholar
  8. Bemis WP, Curtis LD, Weber CW, Berry J (1978) Feral buffalo gourd Cucurbita foetidissima. Econ Bot 32(1):87–95. https://doi.org/10.1007/bf02906733CrossRefGoogle Scholar
  9. Bolley DS, McCormack RH, Curtis LC (1950) The utilization of the seeds of the wild perennial gourds. J Am Oil Chem Soc 27(12):571–574. https://doi.org/10.1007/bf02634988CrossRefGoogle Scholar
  10. Canadian Biotechnology Action Network (CBAN) (2018) https://www.cban.ca/gmos/products/on-the-market/squash/
  11. CBS News. Drought means smaller pumpkins for California this Halloween. 2014Google Scholar
  12. Chakraborty S, Newton AC (2011) Climate change, plant diseases and food security: an overview. Plant Pathol 60(1):2–14Google Scholar
  13. Curtis LC (1946) The possibilities of using species of perennial cucurbits as a source of vegetable fats and protein. Chemurgic Digest 5(13):221–221Google Scholar
  14. Curtis LC, Rebeiz N (1974) The domestication of a wild, perennial, xerophytic gourd: Cucurbita foetidissima, the buffalo gourd. In: Arid lands development program. The Ford Foundation, BeirutGoogle Scholar
  15. Chavez DJ, Kabelka EA, Chaparro JX (2011) Screening of Cucurbita moschata Duchesne germplasm for crown rot resistance to Floridian isolates of Phytophthora capsici Leonian. HortSci 46(4):536–540CrossRefGoogle Scholar
  16. Clark RL, Widrlechner MP, Reitsma KR, Block CC (1991) Cucurbit germplasm at the north central regional plant introduction station, Ames, Iowa. HortSci 26(4):326–451CrossRefGoogle Scholar
  17. Cohen MN (1978) Population pressure and the origins of agriculture. In: Browman DL (ed) Advances in Andean archaeology. Mouton Publishers, The HaugeGoogle Scholar
  18. Cruz-Reyes R, Avila-Sakar G, Sanchez-Montoya G, Quesada M (2015) Experimental assessment of gene flow between transgenic squash and a wild relative in the center of origin of cucurbits. Ecosphere 6(12). https://doi.org/10.1890/es15-00304.1
  19. Daniello F (2003) Estimated water requirements of vegetable crops. In: Horticultural crop guides department of horticultural sciences, Texas A&M University. http://extension.missouri.edu/sare/documents/estimatedwaterrequirementsvegetable2012.pdf
  20. Decker DS (1988) Origin(s), evolution, and systematics of Cucurbita pepo (Cucurbitaceae). Econ Bot 42(1):4–15. https://doi.org/10.1007/bf02859022CrossRefGoogle Scholar
  21. Decker DS, Wilson HD (1987) Allozyme variation in the Cucurbita pepo complex – Cucurbita pepo var ovifera vs Cucurbita texana. Syst Bot 12(2):263–273. https://doi.org/10.2307/2419320CrossRefGoogle Scholar
  22. Decker-Walters D (1990) Evidence for multiple domestications of Cucurbita pepo. In: Bates D, Robinson R, Jeffrey C (eds) Biology and utilization of the Cucurbitaceae. Cornell University, Ithaca/London, pp 96–101Google Scholar
  23. Decker-Walters DS, Walters TW, Cowan CW, Smith BD (1993) Isozymic characterization of wild populations of Cucurbita pepo. J Ethnobiol 13:55–72Google Scholar
  24. Decker-Walters DS, Walters TW (2000) Squash. p. In: Kiple KF, Ornelas KC (eds) The Cambridge world history of food. Cambridge University Press, Cambridge, UK, pp 335–351Google Scholar
  25. Decker-Walters D, Staub J, Chung S, Nakata E, Quemada H (2002) Diversity in free-living Populations of Cucurbita pepo (Cucurbitaceae) as assessed by random amplified polymorphic DNA. Syst Bot 27(1):19–28Google Scholar
  26. Deveaux JS, Shultz EB (1985) Development of buffalo gourd (Cucurbita foetidissima) as a semiarid land starch and oil crop. Econ Bot 39(4):454–472. https://doi.org/10.1007/bf02858754CrossRefGoogle Scholar
  27. Diez MJ, Pico B, Nuez F (2002) Compilers. 2002. In: Cucurbit genetic resources in Europe. Ad hoc. IBPGR, RomeGoogle Scholar
  28. Duchesne A (1786) Essai sur l'histoire naturelle des courges. Panckoucke, ParisGoogle Scholar
  29. Erwin A (1931) Nativity of the Cucurbits. Bot Gaz 91(1):105–108CrossRefGoogle Scholar
  30. Erwin A (1938) An interesting Texas cucurbit. Iowa State Coll J Sci 12:253–255Google Scholar
  31. FAOSTAT (2002) Production quantities of Pumpkins, squash and gourds by countryGoogle Scholar
  32. Ferriol M, Picó B, Nuez F (2004) Morphological and molecular diversity of a collection of Cucurbita maxima landraces. J Am Soc Hortic Sci 129(1):60–69Google Scholar
  33. Ferriol M, Pico B (2008) Pumpkin and winter squash. In: Prohens J, Nuez F (eds) HDB Plant Breeding. Springer, Heidelberg, pp 317–49Google Scholar
  34. Food and Agriculture Organization of the United Nations (FAO) (2017) http://www.fao.org/faostat/en/#data/QC/visualize Item=Pumpkins, squash and gourds. 28
  35. Formisano G, Paris HS, Frusciante L, Ercolano MR (2010) Commercial Cucurbita pepo squash hybrids carrying disease resistance introgressed from Cucurbita moschata have high genetic similarity. Plant Genet Resour C 8(3):198–203. https://doi.org/10.1017/s1479262110000183CrossRefGoogle Scholar
  36. Fritz GJ (1994) Pre-columbian Cucurbita argyrosperma ssp. argyrosperma (Cucurbitaceae) in the eastern woodlands of North America. Econ Bot 48(3):280–292. https://doi.org/10.1007/bf02862329CrossRefGoogle Scholar
  37. Gaba V, Zelcer A, Gal-On A (2004) Cucurbit biotechnology – The importance of virus resistance. In Vitro Cell Dev Biol Plant 40(4):346–358. https://doi.org/10.1079/ivp2004554CrossRefGoogle Scholar
  38. Gathman A, Bemis W (1990) Domestication of buffalo gourd, Cucurbita foetidissima. In: Bates DM, Robinson RW, Jeffrey C (eds) Biology and utilization of the Cucurbitaceae. Cornell University Press, New York, pp 335–348Google Scholar
  39. Geisler M Squash (2014) Ag Marketing Resource Center, Iowa State University. http://www.agmrc.org/commodities-products/vegetables/squash/
  40. Giannini TC, Lira-Saade R, Ayala R, Saraiva AM, Alves-dos-Santos I (2011) Ecological niche similarities of Peponapis bees and non-domesticated Cucurbita species. Ecol Model 222(12):2011–2018. https://doi.org/10.1016/j.ecolmodel.2011.03.031CrossRefGoogle Scholar
  41. Grubben G, Chigumira NF (2004) Cucurbita. In: Grubben G, Denton O (eds) Vegetables. Plant resources of Tropical Africa, vol 2. PROTA, WageningenGoogle Scholar
  42. Havener RD (1974) Domestication of the wild buffalo gourd, a summary statement. In: Arid lands agricultural development program. Ford Foundation, BeirutGoogle Scholar
  43. Illanes A, Schaffeld G, Schiappacasse C, Zuniga M, Gonzalez G, Curotto E et al (1985) Some studies on the protease from a novel source the plant Cucurbita ficifolia. Biotechnol Lett 7(9):669–672. https://doi.org/10.1007/bf01040207CrossRefGoogle Scholar
  44. Jahn M, Munger HM, McCreight JD (2002) Breeding cucurbit crops for powdery mildew resistance. In: The powdery mildews: a comprehensive treatise. American Phytopathological Society (APS Press), St. Paul, pp 239–248Google Scholar
  45. Jones CS (1992) Comparative ontogeny of a wild cucurbit and its derived cultivar. Evolution 46(6):1827–1847. https://doi.org/10.2307/2410034CrossRefPubMedGoogle Scholar
  46. Kates HR, Soltis PS, Soltis DE (2017) Evolutionary and domestication history of Cucurbita (pumpkin and squash) species inferred from 44 nuclear loci. Mol Phylogenet Evol 111:98–109. https://doi.org/10.1016/j.ympev.2017.03.002CrossRefPubMedGoogle Scholar
  47. Karlova K (2008) Cucurbitaceae genetic resources in the Czech gene bank, current status of the collection. In: Pitrat M (ed) Cucurbitaceae. INRA, Avignon, pp 281–283Google Scholar
  48. Keinath AP (2014) Differential susceptibility of nine cucurbit species to the foliar blight and crown canker phases of gummy stem blight. Plant Dis 98(2):247–254. https://doi.org/10.1094/pdis-05-13-0510-reCrossRefPubMedGoogle Scholar
  49. Kennedy C (2015) Climate & Pumpkins. ClimateWatch MagazineGoogle Scholar
  50. Khoury CK, Greene S, Wiersema J, Maxted N, Jarvis A, Struik PC (2013) An Inventory of crop wild relatives of the United States. Crop Sci 53(4):1496–1508. https://doi.org/10.2135/cropsci2012.10.0585CrossRefGoogle Scholar
  51. Kistler L, Newsom LA, Ryan TM, Clarke AC, Smith BD, Perry GH (2015) Gourds and squashes (Cucurbita spp.) adapted to megafaunal extinction and ecological anachronism through domestication. Proc Natl Acad Sci U S A 112(49):15107–15112. https://doi.org/10.1073/pnas.1516109112CrossRefPubMedPubMedCentralGoogle Scholar
  52. Křistkova E, Lebeda A (2000) Resistance in Cucurbita pepo and Cucurbita maxima germplasm to watermelon mosaic potyvirus-2. Plant Genet Resour Newsl 121:47–52Google Scholar
  53. Lebeda A, Křístková E (1996) Resistance in Cucurbita pepo and Cucurbita maxima germplasms to cucumber mosaic virus. Genet Resour Crop Evol 43(5):461–469Google Scholar
  54. Lebeda A, Widrlechner MP, Staub J, Ezura H, Zalapa J, Křístková E (2007) Cucurbits (Cucurbitaceae: Cucumis spp., Cucurbita spp., Citrullus spp.). In: Singh RJ (ed) Genetic resources, chromosome engineering, and crop improvement, vol 3. CRC Press, Boca Raton, pp 271–376Google Scholar
  55. Lebeda A, Křístková E, Roháčková J, Sedláková B, Widrlechner MP, Paris HS (2016) Race-specific response of Cucurbita germplasm to Pseudoperonospora cubensis. Euphytica 212:145Google Scholar
  56. Lira-Saade R, Montes-Hernandez M (1994) Cucurbits (Cucurbita spp.). In: Hernando Bermejo J, Leon J (eds) Neglected crops: 1492 from a different perspective, Plant production and protection, vol 26. FAO, Rome, pp 63–77Google Scholar
  57. Lira R, Tellez O, Davila P (2009) The effects of climate change on the geographic distribution of Mexican wild relatives of domesticated Cucurbitaceae. Genet Resour Crop Evol 56(5):691–703. https://doi.org/10.1007/s10722-008-9394-yCrossRefGoogle Scholar
  58. Luitel BP, Kim SG, Sung JS, Hur OS, Yoon MS, Rhee JH, Ko HC (2016) Screening of pumpkin (Cucurbita spp.) Germplasm for resistance to powdery mildew at various stages of seedlings growth. Res Plant Dis 22(3):133–144Google Scholar
  59. Metcalf RL, Rhodes AM, Ferguson JE, Bitter ERM (1979) Cucurbita spp. as attractants for diabroticite beetles Contract No.: 23Google Scholar
  60. Merrick LC (1995) Squashes, pumpkins and gourds, Cucurbita (Cucurbitaceae). In: Smartt J, Simmonds NW (eds) Evolution of crop plants, 2nd edn. Longman Scientifi and Technical, London, pp 97–105Google Scholar
  61. Minor R, Bond JK (2017) Vegetables and Pulses Yearbook Data/#89011/ April 06, Economic Research Service, USDAGoogle Scholar
  62. Molinar R, Aguiar J, Gaskell M, Mayberry K (2012) Summer squash production in California. UC Small Farm ProgramGoogle Scholar
  63. Montes-Hernandez S, Eguiarte LE (2002) Genetic structure and indirect estimates of gene flow in three taxa of Cucurbita (Cucurbitaceae) in western Mexico. Am J Bot 89(7):1156–1163. https://doi.org/10.3732/ajb.89.7.1156CrossRefPubMedGoogle Scholar
  64. Montes-Hernandez S, Merrick LC, Eguiarte LE (2005) Maintenance of squash (Cucurbita spp.) landrace diversity by farmers’ activities in Mexico. Genet Resour Crop Evol 52(6):697–707. https://doi.org/10.1007/s10722-003-6018-4CrossRefGoogle Scholar
  65. Nabhan GP (1985) Gathering the desert. University of ARizona Press, TucsonGoogle Scholar
  66. Naudin C (1856) Nouvelles recherches sur les caractères spécifiques et les variétés des plantes du genre Cucurbita. Annales des Sciences Naturelles. Botanique, vol IV, pp 5–73Google Scholar
  67. Nee M (1990) The domestication of Cucurbita (Cucurbitaceae). Econ Bot 44(3):56–68. https://doi.org/10.1007/bf02860475CrossRefGoogle Scholar
  68. Nuez F, Fernandez de Cordova P, Ferriol M, Valcarcel J, Pico B, Diez M (2000) Cucurbita ssp. and Lagenaria siceraria collection of the genebank of the center for conservation and breeding of the agricultural biodiversity (COMAV) of the Polytechnical University of Valencia. Cucurbit Genet Coop Rep 23:60–61Google Scholar
  69. Paris HS (1989) Historical records, origins, and development of the edible cultivar groups of Cucurbita pepo (Cucurbitaceae). Econ Bot 43(4):423–443. https://doi.org/10.1007/bf02935916CrossRefGoogle Scholar
  70. Paris HS (2016) Overview of the origins and history of the five major cucurbit crops: issues for ancient DNA analysis of archaeological specimens. Veg Hist Archaeobotany 25(4):405–414. https://doi.org/10.1007/s00334-016-0555-1CrossRefGoogle Scholar
  71. Paris HS, Lebeda A, Kristkova E, Andres TC, Nee MH (2012) Parallel evolution under domestication and phenotypic differentiation of the cultivated subspecies of Cucurbita pepo (Cucurbitaceae). Econ Bot 66(1):71–90. https://doi.org/10.1007/s12231-012-9186-3CrossRefGoogle Scholar
  72. Paur S (1952) Four native New Mexico plants of promise as oilseed crops. In: New Mexico Agric Exp Sta press bull. New Mexico College Agric. Mech. Arts State College, Mexico, p 1064Google Scholar
  73. Pautasso M, Doring TF, Garbelotto M, Pellis L, Jeger MJ (2012) Impacts of climate change on plant diseases-opinions and trends. Eur J Plant Pathol 133(1):295–313. https://doi.org/10.1007/s10658-012-9936-1CrossRefGoogle Scholar
  74. Provvidenti R (1990) Viral diseases and genetic sources of resistance in Cucurbita species. In: Bates DM, Robinson RW, Jeffrey C (eds) Biology and Utilization of the Cucurbitaceae. Comstock Publ Assoc, Cornell University Press, Ithaca and London, pp 427–435Google Scholar
  75. Provvidenti R, Robinson RW, Munger HM (1978) Resistance in feral species to 6 viruses infecting Cucurbita. Plant Dis Rep 62(4):326–329Google Scholar
  76. Rader R, Reilly J, Bartomeus I, Winfree R (2013) Native bees buffer the negative impact of climate warming on honey bee pollination of watermelon crops. Glob Chang Biol 19(10):3103–3110. https://doi.org/10.1111/gcb.12264CrossRefPubMedGoogle Scholar
  77. Robinson R (1995) Squash and Pumpkin. Horticultural Sciences Department, State Agricultural Experiment Station, Geneva, New YorkGoogle Scholar
  78. Robinson RW, Decker-Walters D (1997) Cucurbits. Cab International, New YorkGoogle Scholar
  79. Rodríguez-Arévalo I, Mattana E, Garcia L, Liu U, Lira R, Davila P, Hudson A, Pritchard HW, Ulian T (2017) Conserving seeds of useful wild plants in Mexico: main issues and recommendations. Genet Resour Crop Evol 64(6):1141–1190. https://doi.org/10.1007/s10722-016-0427-7
  80. Rosemeyer M, Wells B, Zaid A, editors (1982) Diseases of the buffalo gourd, Cucurbita foetidissima, in Arizona. Phytopathology; Amer Phytopathological Soc 3340 pilot knob road, St. Paul, mn 55,121.Google Scholar
  81. Sánchez KSV, González Santos R, Aragón-Cuevas F (2015) Community seed banks in Mexico. In: Vernooy R, Shrestha P, Sthapit B (eds) Community seed banks: origins, evolution and prospects. Routledge, London/New YorkGoogle Scholar
  82. Sanjur OI, Piperno DR, Andres TC, Wessel-Beaver L (2002) Phylogenetic relationships among domesticated and wild species of Cucurbita (Cucurbitaceae) inferred from a mitochondrial gene: Implications for crop plant evolution and areas of origin. Proc Natl Acad Sci U S A 99(1):535–540. https://doi.org/10.1073/pnas.012577299CrossRefPubMedPubMedCentralGoogle Scholar
  83. Sasu MA, Ferrari MJ, Du D, Winsor JA, Stephenson AG (2009) Indirect costs of a nontarget pathogen mitigate the direct benefits of a virus-resistant transgene in wild Cucurbita. Proc Natl Acad Sci 106(45):19067–19071CrossRefGoogle Scholar
  84. Schaefer H, Heibl C, Renner SS (2009) Gourds afloat: a dated phylogeny reveals an Asian origin of the gourd family (Cucurbitaceae) and numerous oversea dispersal events. Proc R Soc Biol Sci 276(1658):843–851CrossRefGoogle Scholar
  85. Scheerens JC, Ralowicz AE, TL MG, Bee KA, Nelson JM, Gathman AC (1991) Phenotypic variation of agronomic traits among coyote gourd accessions and their progeny. Econ Bot 45(3):365–378. https://doi.org/10.1007/bf02887078CrossRefGoogle Scholar
  86. Shahani H, Dollear F, Markley K, Quinby J (1951) The buffalo gourd, a potential oilseed crop of the southwestern drylands. J Am Oil Chem Soc 28(3):90–95CrossRefGoogle Scholar
  87. Sharma BR, Lal T (1998) Improvement and cultivation of Cucurbita and Benincasa. In: Nayar NM, More TA (eds) Cucurbits. Science Publishers, New HampshireGoogle Scholar
  88. Small (2014) North American cornucopia. CRC Press, Boca RatonGoogle Scholar
  89. Smith BD (2001) Documenting plant domestication: the consilience of biological and archaeological approaches. Proc Natl Acad Sci 98(4):1324–1326CrossRefGoogle Scholar
  90. Smith B (2006) Eastern North America as an independent center of plant domestication. Proc Natl Acad Sci U S A 103(33):12223–12228. https://doi.org/10.1073/pnas.0604335103CrossRefPubMedPubMedCentralGoogle Scholar
  91. Smith BD, Cowan CW, Hoffman MP (2007) Rivers of change: essays on early agriculture in eastern North America. University of Alabama Press, AlabamaGoogle Scholar
  92. Towle MA (1961) The ethnobotany of pre-Columbian Peru. Viking Fund Pub. Anthropol, New YorkGoogle Scholar
  93. Tricoli D, Carney K, Russel PM Jr, Groff DW, Hadden KC, Himmel PT, Habbard JP, Ml B, Reynolds JF, Quemada HD (1995) Field evaluation of transgenic squash containing single or multiple virus coat protein gene constructs for resistance to cucumber mosaic virus, watermelon mosaic virus. Nat Biotechnol 13:1458–1465CrossRefGoogle Scholar
  94. Walters TW, Decker-Walters DS (1993) Systematics of the endangered Okeechobee gourd (Cucurbita okeechobeensis Cucurbitaceae). Syst Bot 18(2):175–187. https://doi.org/10.2307/2419395
  95. Wang Y-H (2012) Mapping and molecular breeding of monogenic traits. In: Wang Y-H, Behera T, Kole C (eds) Genetics, Genomics, and Breeding of Cucurbits. Genetics, Genomics, and Breeding of Crop Plants. CRC Press, Boca RatonGoogle Scholar
  96. Walkey DGA, Pink DAC (1984) Resistance in vegetable marrow and other Cucurbita spp. to two British strains of cucumber mosaic virus. J Agric Sci 102(1):197–205Google Scholar
  97. Ward DB, Minno MC (2002) Rediscovery of the endangered Okeechobee gourd (Cucurbita okeechobeensis) along the St. Johns River, Florida, where last reported by William Bartram in 1774. Castanea 67(2):201–206Google Scholar
  98. Watanabe ME (2013) Pollinators at risk: human activities threaten key species. Bioscience 64(1):5–10 bit012CrossRefGoogle Scholar
  99. Wessel-Beaver L (1998) Sources of whitefly-induced silvering resistance in Cucurbita. In: McCreight J (ed) Cucurbitaceae 98: evaluation and enhancement of cucurbit germplasm. ASHS Press, AlexandriaGoogle Scholar
  100. Wessel-Beaver L (2000) Cucurbita argyrosperma sets fruits in fields where C. moschata is the only pollen source. Rep Cucurbit Genet Coop 23:62–63Google Scholar
  101. Whitaker TW, Davis GN (1962) Cucurbits. Botany, cultivation, and utilization. Interscience Publishers, New YorkGoogle Scholar
  102. Whitaker T, Robinson R (1986) Squash breeding. In: Bassett M (ed) Breeding vegetable crops, Westport, pp 209–242Google Scholar
  103. Wilson HD, Lira R, Rodríguez I (1994) Crop/Weed gene flow: Cucurbita argyrosperma Huber and C. fraterna LH Bailey (Cucurbitaceae). Econ Bot 48(3):293–300CrossRefGoogle Scholar
  104. Yang S-L, Walters TW (1992) Ethnobotany and the economic role of the Cucurbitaceae of China. Econ Bot 46(4):349–367CrossRefGoogle Scholar
  105. Zheng Y-H, Alverson AJ, Wang Q-F, Palmer JD (2013) Chloroplast phylogeny of Cucurbita: evolution of the domesticated and wild species. J Syst Evol 51(3):326–334. https://doi.org/10.1111/jse.12006
  106. Zhou J, Hu H, Li X, Zhou R, Zhang H (2010) Identification of a resource of powdery mildew resistance in Cucurbita moschata. Acta Hortic (871):141–146Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Florida Museum of Natural History, University of FloridaGainesvilleUSA

Personalised recommendations