Advertisement

North American Wild Relatives of Grain Crops

  • David M. BrennerEmail author
  • Harold E. Bockelman
  • Karen A. Williams
Chapter

Abstract

The wild-growing relatives of the grain crops are useful for long-term worldwide crop improvement research. There are neglected examples that should be accessioned as living seeds in gene banks. Some of the grain crops, amaranth, barnyard millet, proso millet, quinoa, and foxtail millet, have understudied unique and potentially useful crop wild relatives in North America. Other grain crops, barley, buckwheat, and oats, have fewer relatives in North America that are mostly weeds from other continents with more diverse crop wild relatives. The expanding abilities of genomic science are a reason to accession the wild species since there are improved ways to study evolution within genera and make use of wide gene pools. Rare wild species, especially quinoa relatives in North American, should be acquired by gene banks in cooperation with biologists that already study and conserve at-risk plant populations. Many of the grain crop wild relatives are weeds that have evolved herbicide resistance that could be used in breeding new herbicide-resistant cultivars, so well-documented examples should be accessioned and also vouchered in gene banks.

Keywords

Gene pool Germplasm Amaranthus Avena Chenopodium Echinochloa Hordeum Panicum Setaria 

Notes

Acknowledgment

Dra. Cristina Mapes, Curadora Colección etnobotánica, Jardín Botánico, Instituto de Biología, UNAM., helped with citations of research in Mexico. David M. Brenner is supported by Hatch Multistate Project NC-7.

References

  1. AAFC Plant Gene Resources of Canada (2017) Germplasm Resources Information Network-Canadian Version (GRIN-CA) database. Plant Gene Resources of Canada, Saskatoon. http://pgrc3.agr.gc.ca/search_grinca-recherche_rirgc_e.html. Accessed 27 Sept 2017
  2. Aliscioni SS, Giussani LM, Zuloaga FO, Kellogg EA (2003) A molecular phylogeny of Panicum (Poaceae: Paniceae): tests of monophyly and phylogenetic placement within the Panicoideae. Am J Bot 90:796–821. https://doi.org/10.3732/abj.90.5.796CrossRefPubMedGoogle Scholar
  3. Andini R, Yoshida S, Ohsawa R (2013) Variation in protein content and amino acids in the leaves of grain, vegetable and weedy types of amaranths. Agronomy 3:391–403. https://doi.org/10.3390/agronomy3020391CrossRefGoogle Scholar
  4. Aoki D, Yamaguchi H (2009) Oryza sh4 gene homologue represents homologous genomic copies in polyploid Echinochloa. Weed Biol Manag 9:225–233. https://doi.org/10.1111/j.1445-6664.2009.00343.xCrossRefGoogle Scholar
  5. Austin DF (2006) Fox-tail millets (Setaria: Poaceae) – abandoned food in two hemispheres. Econ Bot 60:143–158Google Scholar
  6. Baltensperger DD (1996) Foxtail and Proso millet. In: Janick J (ed) Progress in new crops. ASHS Press, Alexandria, pp 182–190Google Scholar
  7. Baum BR (2007) Avena L. In: Flora of North America Editorial Committee (ed) Flora of North America North of Mexico, vol 24. Oxford University Press, New York, pp 734–739Google Scholar
  8. Bayón ND (2015) Revisión Taxonómica de las Especies Monoicas de Amaranthus (Amaranthaceae): Amaranthus subg. Amaranthus y Amaranthus subg. Albersia. Ann Mo Bot Gard 101:261–383. https://doi.org/10.3417/2010080CrossRefGoogle Scholar
  9. Benet-Pierce N, Simpson MG (2010) Chenopodium littoreum (Chenopodiaceae), a new goosefoot from dunes of south-central costal California. Madrono 57:64–72. https://doi.org/10.3120/0024-9637-57.1.64CrossRefGoogle Scholar
  10. Benet-Pierce N, Simpson MG (2014) The taxonomy of Chenopodiuim desiccatum and C. nitens, sp. nov. J Torrey Bot Soc 141:161–172. https://doi.org/10.3159/TORREY-D-13-00046.1CrossRefGoogle Scholar
  11. Benet-Pierce N, Simpson MG (2017) Taxonomic recovery of the species in the Chenopodium neomexicanum (Chenopodiaceae) complex and description of Chenopodium sonorense sp. nov. J Torrey Bot Soc 144:339–356CrossRefGoogle Scholar
  12. Bhandari HS, Ebina M, Saha MC, Bouton JH, Rudrabhatla SV, Goldman SL (2011) Panicum. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, millets and grasses, vol 2. Springer, Berlin/Heidelberg, pp 174–196. http://link.springer.com/chapter/10.1007/978-3-642-14255-0_11Google Scholar
  13. Bhargava A, Ohri D (2016) Origin of genetic variability and improvement of Quinoa (Chenopodium quinoa Willd.). In: Rajpal VR, Ram Rao SR, Raina SN (eds) Gene pool diversity and crop improvement, sustainable development and biodiversity 10. Springer International Publishing, Cham, pp 241–270. https://doi.org/10.1007/978-3-319-27096-8_8CrossRefGoogle Scholar
  14. Bhargava A, Srivastava S (eds) (2013) Quinoa: botany, production and uses. CAB International, Walingford Oxfordshire. https://doi.org/10.1079/9781780642260.0000CrossRefGoogle Scholar
  15. Bhargava A, Shukla S, Ohri D (2007) Evaluation of foliage yield and leaf quality traits in Chenopodium spp. in multiyear trials. Euphytica 153:199–213. https://doi.org/10.1007/s10681-006-9255-8CrossRefGoogle Scholar
  16. Bhatia AL (2005) Growing colorful and nutritious amaranths. Nat Prod Radiance 4:40–43Google Scholar
  17. Brenner DM (2002) Non-shattering grain amaranth populations. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS Press, Alexandria, pp 104–106. https://hort.purdue.edu/newcrop/ncnu02/v5-104.htmlGoogle Scholar
  18. Brenner DM, Baltensperger DD, Kulakow PA, Lehmann JW, Myers RL, Slabbert MM, Sleugh BB (2000) Genetic resources and breeding of Amaranthus. In: Janick J (ed) Plant Breed Rev 19:227–285. https://doi.org/10.1002/9780470650172.ch7
  19. Brenner DM, Johnson WG, Sprague CL, Tranel PJ, Young BG (2013) Crop–weed hybrids are more frequent for the grain amaranth ‘Plainsman’ than for ‘D136-1’. Genet Resour Crop Evol 60:2201–2205. https://doi.org/10.1007/s10722-013-0043-8CrossRefGoogle Scholar
  20. Brutnell TP, Wang L, Smartwood K, Goldschmidt A, Jackson D, Zhu XG, Kellogg E, Van Eck J (2010) Setaria viridis: a model for C4 photosynthesis. Plant Cell 22:2537–2544. https://doi.org/10.1105/tcp.110.075309CrossRefPubMedPubMedCentralGoogle Scholar
  21. Burrows VD (1970) Yield and disease-escape potential of fall-sown oats possessing seed dormancy. Can J Pl Sci 50:371–377CrossRefGoogle Scholar
  22. Cavers PB, Kane M (2016) The biology of Canadian weeds: 155. Panicum miliaceum L. Can J Plant Sci 96(6):939–988. https://doi.org/10.1139/cjps-2015-0152CrossRefGoogle Scholar
  23. Chan K, Sun M (1997) Genetic diversity and relationships detected by isozyme and RAPD analysis of crop and wild species of Amaranthus. Theor Appl Genet 95:865–873. https://doi.org/10.1007/s001220050637CrossRefGoogle Scholar
  24. Chrungoo NK, Sangma SC, Bhatt V, Raina SN (2011) Fagopyrum. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, cereals, vol 1. Springer, Berlin/Heidelberg, pp 293–307CrossRefGoogle Scholar
  25. Clemants SE, Mosyakin SL (2003) Chenopodium. In: Flora of North America Editorial Committee (ed) Flora of North America North of Mexico, vol 4. Oxford University Press, New York, pp 275–299Google Scholar
  26. Clouse JW, Adhikary D, Page JT, Ramaraj T, Deyholos MK, Udall JA, Fairbanks DJ, Jellen EN, Maughan PJ (2016) The amaranth genome: genome, transcriptome, and physical map assembly. Plant Genome 9. https://doi.org/10.3835/plantgenome2015.07.0062
  27. Costea M, Sanders A, Waines G (2001) Preliminary results toward a revision of the Amaranthus hybridus species complex (Amaranthaceae). SIDA Contrib Bot 19:931–974. http://www.jstor.org/stable/41967947Google Scholar
  28. Cromwell BT (1950) The micro-estimation and origin of trimethylamine in Chenopodium vulvaria L. Biochem J 46:578–581CrossRefGoogle Scholar
  29. Darmency H, Dekker J (2011) Setaria. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, millets and grasses, vol 2. Springer, Berlin/Heidelberg, pp 275–296. https://doi.org/10.1007/978-3-642-14255-0CrossRefGoogle Scholar
  30. Darmency H, Zangre GR, Pernes J (1987) The wild-weed-crop complex in Setaria: a hybridization study. Genetica 75:103–107. https://doi.org/10.1007/BF00055253CrossRefGoogle Scholar
  31. de Wet JMJ, Prasada Rao KE, Brink DE (1983) Systematics and domestication of Panicum sumatrense (Gramineae). J Agric Trad Bot Appl 30:159–168. http://www.persee.fr/doc/jatba_0183-5173_1983_num_30_2_3898Google Scholar
  32. Doebley JF (1984) “Seeds” of wild grasses: a major food of southwestern Indians. Econ Bot 38:52–64CrossRefGoogle Scholar
  33. Dwivedi S, Upadhyaya H, Senthilvel S, Hash C, Fukunaga K, Diao X, Santra D, Baltensperger D, Prasad M (2012) Millets: genetic and genomic resources. In: Janick J (ed) Plant Breed Rev 35:247–377. https://doi.org/10.1002/9781118100509.ch5
  34. Escobedo-López D, Núñez-Colín CA, Espitia-Rangel E (2014) Adaptation of cultivated amaranth (Amaranthus spp.) and their wild relatives in Mexico. J Crop Improv 28:203–213. https://doi.org/10.1080/15427528.2013.869518CrossRefGoogle Scholar
  35. Flora of North America Editorial Committee (ed) (1993) Flora of North America north of Mexico. 19+ vols. Oxford University Press, New York. http://floranorthamerica.org/Google Scholar
  36. Fowler CS (1986) Subsistence. In: D’Azevedo WL (ed) Great Basin. Handbook of North American Indians Sturtevant WC (general ed), vol 11. Smithsonian Institution Press, Washington, DC, p 76Google Scholar
  37. Freckman RW, Lelong MG (2003) Panicum. In: Flora of North America Editorial Committee (ed) Flora of North America north of Mexico, vol 25. Oxford University Press, New York, pp 450–488Google Scholar
  38. Fuentes-Bazan S, Uotila P, Borsch T (2012) A novel phylogeny-based generic classification for Chenopodium sensu lato, and a tribal rearrangement of Chenopodioideae (Chenopodiaceae). Willdenowia 42:5–24. https://doi.org/10.3372/wi.42.42101CrossRefGoogle Scholar
  39. Gaines TA, Ward SM, Bukun B, Preston C, Leach JE, Westra P (2012) Interspecific hybridization transfers a previously unknown glyphosate resistance mechanism in Amaranthus species. Evol Appl 5:29–38. https://doi.org/10.1111/j.1752-4571.2011.00204.xCrossRefPubMedGoogle Scholar
  40. Gandarillas A, Saravia R, Plata G, Quispe R, Ortiz-Romero R (2015) In: Bazile D, Bertero D, Nieto C (eds) State of the art report of quinoa in the world in 2013. Oficina Regional de la FAO para América Latina y el Caribe, Rome, pp 192–215Google Scholar
  41. Gibbons E (1962) Stalking the wild asparagus. David McKay Company, New YorkGoogle Scholar
  42. Global Crop Diversity Trust (2017) GENESYS. Available: http://www.croptrust.org/content/global-information-system. Accessed 16 June 2017
  43. Goron TL, Raizada MN (2015) Genetic diversity and genomic resources available for the small millet crops to accelerate a new green revolution. Front Plant Sci 6:157. https://doi.org/10.3389/fpls.2015.00157CrossRefPubMedPubMedCentralGoogle Scholar
  44. Gowda J, Gekha D, Somu G, Bharathi S, Krishnappa M (2008) Development of core set in little millet (Panicum sumatrense Roth ex Roemer and Schultes) germplasm using data on twenty one morpho-agronomic traits. Environ Ecol 26:1055–1060Google Scholar
  45. Guinness World Records (2017) http://www.guinnessworldrecords.com/. Accessed 27 Sept 2017
  46. Han-Ping H, Corke H (2003) Oil and squalene in Amaranthus grain and leaf. J Agric FoodChem 51:7913–7920CrossRefGoogle Scholar
  47. Hauptli H, Jain SK (1978) Biosystematics and agronomic potential of some weedy and cultivated amaranths. Theor Appl Genet 52:177–185CrossRefGoogle Scholar
  48. Heap I (2017) The International Survey of Herbicide Resistant Weeds. Weed Science. www.weedscience.com. Accessed 27 Sept 2017
  49. Henrickson J (1999) Studies in New World Amaranthus (Amaranthaceae). Sida 18:783–807Google Scholar
  50. Hilty J (2017) Illinois Wildflowers. http://www.illinoiswildflowers.info/grasses/plants/squirrel_tail.htm. Accessed 20 Mar 2017
  51. Hinds HR, Freeman CC (2005) Fagopyrum. In: Flora of North America Editorial Committee (ed) Flora of North America North of Mexico, vol 5. Oxford University Press, New York, pp 572–573Google Scholar
  52. Hiremath SC, Patel GNV, Salimath SS (1990) Genome homology and origin of Panicum sumatrense (Gramineae). Cytologia 55:315–319CrossRefGoogle Scholar
  53. Hirich A, Choukr-Allah R, Jacobsen SE (2014) Quinoa in Morocco – effect of sowing dates on development and yield. J Agron Crop Sci 200:371–377. https://doi.org/10.1111/jac.12071CrossRefGoogle Scholar
  54. Hodge JC, Kellogg EA (2016) Abscission zone development in Setaria viridis and its domesticated relative, Setaria italic. Am J Bot 103:998–1005. https://doi.org/10.3732/ajb.1500499CrossRefPubMedGoogle Scholar
  55. Huang P, Feldman M, Schroder S, Bahri BA, Diao X, Zhi H, Estep M, Baxter I, Devos KM, Kellogg EA (2014) Population genetics of Setaria viridis, a new model system. Mol Ecol 23:4912–4925. https://doi.org/10.1111/mec.12907CrossRefPubMedGoogle Scholar
  56. Hunt HV, Badakshi E, Romanova O, Howe CJ, Jones MK, Heslop-Harrison JSP (2014) Reticulate evolution in Panicum (Poaceae): the origin of tetraploid broomcorn millet, P. miliaceum. J Exp Bot 65:3165–3175. https://doi.org/10.1093/jxb/eru161CrossRefPubMedPubMedCentralGoogle Scholar
  57. Hutchinson DL, Norr L, Schobner T, Marquardt WH, Walker KJ, Newsom LA, Scarry CM (2016) The Calusa and prehistoric subsistence in central and South Gulf Coast Florida. J Anthropol Archaeol 41:55–73. https://doi.org/10.1016/j.jaa.2015.10.004CrossRefGoogle Scholar
  58. IPGRI, PROINPA e IFAD (2005) Descriptores para cañahua (Chenopodium pallidicaule Aellen). Instituto Internacional de Recursos Fitogenéticos, Roma; Fundación PROINPA, La Paz; International Fund for Agricultural Development, Rome. http://www.bioversityinternational.org/index.php?id=244&tx_news_pi1%5Bnews%5D=917&cHash=b050989b5a641574ca1c9f4da0ec6723Google Scholar
  59. Jarvis DE, Ho YS, Lightfoot DJ, Schmockel SM, Li B, Borm TJA, Ohyanagi H, Mineta K, Michell CT, Saber N, Kharbatia NM, Rupper RR, Sharp AR, Dally N, Boughton BA, Woo YH, Gao G, Schijlen EGWM, Guo X, Momin AA, Negrao S, Ali-Babili S, Gehring C, Roessner U, Jung C, Murphy K, Arnold ST, Gojobori T, van der Linden CG, van Loo EN, Jellen EN, Maughan PJ, Tester M (2017) The genome of Chenopodium quinoa. Nature 542:307–312. http://www.nature.com/doifinder/10.1038/nature21370CrossRefGoogle Scholar
  60. Jellen EN, Kolano BA, Sederberg MC, Bonifacio A, Maughan PJ (2011) Chenopodium. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, legume crops and forages, vol 4. Springer, Berlin/Heidelberg, pp 35–61. https://doi.org/10.1007/978-3-642-14387-8_3CrossRefGoogle Scholar
  61. Jiang H, Barbier H, Brutnell T (2013) Methods for performing crosses in Setaria viridis, a new model system for the grasses. J Vis Exp 80:e50527. https://doi.org/10.3791/50527CrossRefGoogle Scholar
  62. Kauffman CS (1992) The status of grain amaranth for the 1990s. Food Rev Int 8:165–185CrossRefGoogle Scholar
  63. Kietlinski KD, Jimenez F, Jellen EN, Maughan PJ, Smith SM, Pratt DB (2014) Relationships between the Weedy (Amaranthaceae) and the Grain Amaranths. Crop Sci 54:220–228. https://doi.org/10.2135/cropsci2013.03.0173CrossRefGoogle Scholar
  64. Kolano B, Saracka K, Broda-Cnota A, Maluszynska J (2013) Localization of ribosomal DNA and CMA3/DAPI heterochromatin in cultivated and wild Amaranthus species. Sci Hortic (Amst) 164:249–255. https://doi.org/10.1016/j.scienta.2013.09.016CrossRefGoogle Scholar
  65. Kole C (ed) (2011) Wild crop relatives: genomic and breeding resources. Springer, Berlin/Heidelberg, 10 vols. http://www.springer.com/services+for+this+book?SGWID=0-1772415-3260-0-9783642143861Google Scholar
  66. Lanoue KZ, Wolf PG, Browning S, Hood EE (1996) Phylogenetic analysis of restriction-site variation in wild and cultivated Amaranthus species (Amaranthaceae). Theor Appl Genet 93:722–732. https://doi.org/10.1007/BF00224068CrossRefPubMedGoogle Scholar
  67. Lata C, Gupts S, Prasad M (2013) Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. Crit Rev Biotechnol 33:328–343. https://doi.org/10.3109/07388551.2012.716809CrossRefPubMedGoogle Scholar
  68. Lawrence BK, Waller SS, Moser LE, Anderson BE, Larson LL (1989) Forage value of weed species in a grass seeding. In: Bragg TB, Stubbendieck J (eds) Prairie pioneers: ecology, history and culture: proceedings of the eleventh north American prairie conference, august 1988. University of Nebraska Printing, Lincoln, pp 91–94Google Scholar
  69. Layton DJ, Kellogg EA (2014) Morphological, phylogenetic and ecological diversity of the new model species Setaria viridis (Poaceae: Paniceae) and its close relatives. Am J Bot 101:539–557. https://doi.org/10.3732/ajb.1300428CrossRefPubMedGoogle Scholar
  70. Liu HY (1996) Chenopodiaceae. In: Editorial Committee of the Flora of Taiwan (ed) Flora of Taiwan, vol 2. Editorial Committee of the Flora of Taiwan, Taipei, pp 382–387Google Scholar
  71. LoPresti EF (2014) Chenopod salt bladders deter insect herbivores. Oecologia 174:921–930. https://doi.org/10.1007/s00442-013-2827-0CrossRefPubMedGoogle Scholar
  72. Luby JJ, Stuthman DD (1983) Evaluation of Avena sativa L./A. fatua L. progenies for agronomic and grain quality characters. Crop Sci 23:1047–1052CrossRefGoogle Scholar
  73. Mandelbaum CI, Barbeau WE, Hilu KW (1995) Protein, calcium, and iron content of wild and cultivated species of Echinochloa. Plant Foods Human Nutr 47:101–108CrossRefGoogle Scholar
  74. Martin AC, Zim HS, Nelson AL (1951) American wildlife and plants: a guide to wildlife food habits. Dover Publications, New YorkGoogle Scholar
  75. Matanguihan JB, Maughan PJ, Jellen EN, Kolano B (2015) Quinoa cytogenetics, molecular genetics, and diversity. In: Murphy K, Matanguihan JB (eds) Quinoa: improvement and sustainable production. Wiley, Hoboken, pp 109–123. https://doi.org/10.1002/9781118628041.ch7CrossRefGoogle Scholar
  76. Mckenzie P, Michael P, Urbatsch L, Nobel R, Proctor G (1993) First record of Echinochloa stagnina (Poaceae) for Puerto Rico and key to the Echinochloa in the West Indies. SIDA Contrib Bot 15:527–532 http://www.jstor.org/stable/41967030Google Scholar
  77. Michael PW (2003) Echinochloa. In: Flora of North America Editorial Committee (ed) Flora of North America North of Mexico, vol 25. Oxford University Press, New York, pp 390–403Google Scholar
  78. Moerman DE (2017) Native American Ethnobotany: a database of foods, drugs, dyes and fibers of native American peoples, derived from plants. http://naeb.brit.org/. Accessed 27 Sept 2017
  79. Mohan G (2016) Is quinoa California farmers’ new kale? http://www.latimes.com/business/la-fi-quinoa-20160511-story.html
  80. Mosyakin SL, Robertson KR (2003) Amaranthus. In: Flora of North America Editorial Committee (ed) Flora of North America North of Mexico, vol 4. Oxford University Press, New York, pp 410–435Google Scholar
  81. Murray MJ (1940a) The genetics of sex determination in the family Amaranthaceae. Genetics 25:409–431PubMedPubMedCentralGoogle Scholar
  82. Murray MJ (1940b) Colchicine induced tetraploids in dioecious and monecious species of the Amaranthaceae. J Hered 31:477–485CrossRefGoogle Scholar
  83. Muthamilarasan M, Prasad M (2015) Advances in Setaria genomics for genetic improvement of cereals and bioenergy grasses. Theor Appl Genet 128:1–14. https://doi.org/10.1007/s00122-014-2399-3CrossRefPubMedGoogle Scholar
  84. Nabhan G, de Wet JMJ (1984) Panicum sonorum in Sonoran Desert Agriculture. Econ Bot 38:65–82. https://doi.org/10.1007/BF02904417CrossRefGoogle Scholar
  85. NatureServe (2017) NatureServe explorer: an online encyclopedia of life [web application]. Version 7.1. NatureServe, Arlington. Available http://explorer.natureserve.org. Accessed 27 Sept 2017
  86. Núñez De Arco S (2015) Quinoa’s calling. In: Murphy K, Matanguihan J (eds) Quinoa: improvement and sustainable production. Wiley, Hoboken, pp 211–226. https://doi.org/10.1002/9781118628041.ch12CrossRefGoogle Scholar
  87. NYBG (2017) C. V. Starr Virtual Herbarium, New York Botanical Garden. http://sweetgum.nybg.org/science/vh/. Accessed 27 Sept 2017
  88. Pal M, Pandy RM, Khoshoo TN (1982) Evolution and improvement of cultivated amaranths IX. Cytogenetic relationships between the two basic chromosome numbers. J Hered. 73:353–356Google Scholar
  89. Park Y, Nishikawa T, Matsushima K, Minami M, Tomooka N, Nemoto K (2014) Molecular characterization and genetic diversity of the starch branching enzyme (SBE) gene from Amaranthus: the evolutionary origin of grain amaranths. Mol Breed 34:1975–1985. https://doi.org/10.1007/s11032-014-0156-6CrossRefGoogle Scholar
  90. Partap T, Joshi BD, Galwey NL (1998) Chenopods. Chenopdium spp. Promoting the conservation and use of underutilized and neglected crops. 22. Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute, RomeGoogle Scholar
  91. Pater MJ (1995) Registration of ‘Stevan’ plains bristle grass. Crop Sci 35:1208–1208. https://doi.org/10.2135/cropsci1995.0011183X003500040058xCrossRefGoogle Scholar
  92. Peterson AJ, Murphy KM (2015) Quinoa cultivation for temperate North America: consideration and areas for investigation. In: Murphy K, Matanguihan JB (eds) Quinoa: improvement and sustainable production. Wiley, Hoboken, pp 173–192. https://doi.org/10.1002/9781118628041.ch10CrossRefGoogle Scholar
  93. Popa O, Băbeanu NE, Popa I, Niță S, Dinu-Pârvu CE (2015) Methods for obtaining and determination of squalene from natural sources. Biomed Res Int 2015:Article ID 367202, p 16. https://doi.org/10.1155/2015/367202CrossRefGoogle Scholar
  94. Prasada Rao KE, de Wet JMJ, Brink DE, Mengesha MH (1987) Infraspecific variation and systematics of cultivated Setaria italica, foxtail millet (Poaceae). Econ Bot 41:108–116. http://www.jstor.org/stable/4254946CrossRefGoogle Scholar
  95. Price TD (2009) Ancient farming in eastern North America. PNAS 106:6427–6428. https://doi.org/10.1073/pnas.0902617106
  96. Reich JM, Brinkman MA (1984) Inheritance of groat protein percentage in Avena sativa L. x A. fatua L. crosses. Euphytica 33:907–913CrossRefGoogle Scholar
  97. Rines HW, Stuthman DD, Briggle LW, Youngs VL, Jedlinski H, Smith DH, Webster JA, Rothman PG (1980) Collection and evaluation of Avena fatua for use in oat improvement. Crop Sci 20:63–68CrossRefGoogle Scholar
  98. Rominger JM (1962) Taxonomy of Setaria (gramineae) in North America. Ill Biol Monogr 29:78–98Google Scholar
  99. Rominger JM (2003) Setaria. In: Flora of North America Editorial Committee (ed) Flora of North America North of Mexico, vol 25. Oxford University Press, New York, pp 539–558Google Scholar
  100. Ruiz-Santaella JP, Bastida F, Franco AR, De Prado R (2006) Morphological and molecular characterization of different Echinochloa spp. and Oryza sativa populations. J Agric Food Chem 54:1166–1172. https://doi.org/10.1021/jf0520746CrossRefPubMedGoogle Scholar
  101. Sajjad A, Munir H, Ehsanullah, Anjum SA, Tanveer M, Rehman A (2014) Growth and development of Chenopodium quinoa genotypes at different sowing dates. J Agric Res 52:535–546. http://www.jar.com.pk/upload/1424963047_115_P7._4322.pdfGoogle Scholar
  102. Saleh ASM, Zhang Q, Chen J, Shen Q (2013) Millet grains: nutritional quality, processing, and potential health benefits. Compr Rev Food Sci Food Saf 12:281–295. https://doi.org/10.1111/1541-4337.12012CrossRefGoogle Scholar
  103. Sanchez A, Schuster TM, Burke JM, Kron KA (2011) Taxonomy of Polygonoideae (Polygonaceae): a new tribal classification. Taxon 60:151–160. http://www.jstor.org/stable/41059829CrossRefGoogle Scholar
  104. Sauer JD (1993) Historical geography of crop plants: a select roster. CRC Press, Boca RatonGoogle Scholar
  105. Schröder S, Bahri BA, Eudy DM et al (2017) Genetic diversity and origin of North American green foxtail [Setaria viridis (L.) Beauv.] accessions. Genet Resour Crop Evol 64:367. https://doi.org/10.1007/s10722-016-0363-6CrossRefGoogle Scholar
  106. Sheahan CM (2014) Plant guide for Japanese millet (Echinochloa esculenta). USDA-Natural Resources Conservation Service, Cape May Plant Materials Center, Cape May. https://plants.usda.gov/plantguide/pdf/pg_eces.pdf. Accessed 6 Oct 2017Google Scholar
  107. Silberhorn GM (1999) Common plants of the mid-Atlantic Coast: a field guide. John Hopkins University, BaltimoreGoogle Scholar
  108. Smith BD, Yarnell RA (2009) Initial formation of an indigenous crop complex in eastern North America at 3800 P.P. Proc Natl Acad Sci U S A 106:6561–6566. https://doi.org/10.1073/pnas.0901846106CrossRefPubMedPubMedCentralGoogle Scholar
  109. Sood S, Khulbe RK, Gupta AK, Agrawal PK, Upadhyaya HD, Bhatt JC (2015) Barnyard millet – a potential food and feed crop of future. Plant Breed 134:135–147. https://doi.org/10.1111/pbr.12243CrossRefGoogle Scholar
  110. Stetter MG, Schmid KJ (2017) Analysis of phylogenetic relationships and genome size evolution of the Amaranthus genus using GBS indicates the ancestors of an ancient crop. Mol Phylogenetics Evol 109:80–92CrossRefGoogle Scholar
  111. Stetter MG, Zeitler L, Steinhaus A, Kroener K, Biljecki M, Schmid KJ (2016) Crossing methods and cultivation conditions for rapid production of segregating populations in three grain amaranth species. Front Plant Sci 7:816. https://doi.org/10.3389/fpls.2016.00816CrossRefPubMedPubMedCentralGoogle Scholar
  112. Stevens JB, Brinkman MA (1982) Performance of Avena sativa L./Avena fatua L. backcross lines. Euphytica 35:785–792CrossRefGoogle Scholar
  113. Stinson RH, Peterson RL (1979) On sowing wild oats. Can J Bot 57:1292–1295CrossRefGoogle Scholar
  114. Storchova H, Drabesova J, Chab D, Kolar J, Jellen EN (2015) The introns in FLOWERING LOCUS T-LIKE (FTL) genes are useful markers for tracking paternity in tetraploid Chenopodium quinoa Willd. Genet Resour Crop Evol 62:913–925. https://doi.org/10.1007/s10722-014-0200-8CrossRefGoogle Scholar
  115. Suneson CA (1967a) Registration of Rapida oats. Crop Sci 7:168Google Scholar
  116. Suneson CA (1967b) Registration of Sierra oats. Crop Sci 7:168Google Scholar
  117. Sunil M, Hariharan AK, Nayak S, Gupta S, Nambisan SR, Gupta RP, Panda B, Choudhary B, Srinivasan S (2014) The draft genome and transcriptome of Amaranthus hypochondriacus: A C4 dicot producing high-lysine edible pseudo-cereal. DNA Res 21:585–602. https://doi.org/10.1093/dnares/dsu021CrossRefPubMedPubMedCentralGoogle Scholar
  118. Tanesaka E, Sago R, Yamaguchi H (2008) Habitat of Echinochloa species in the south central U.S.A. Mem Fac Agric Kinki Univ 41:169–175Google Scholar
  119. Tatum TC, Skirvin R, Tranel PJ, Norton M, Lane Rayburn A (2005) In vitro root induction in weedy Amaranthus species to obtain mitotic chromosomes. In Vitro Cell Dev Biol Plant 41:844–847. https://doi.org/10.1079/IVP2005693CrossRefGoogle Scholar
  120. Thetford M, Knox GW, Duke ER (2011) Ornamental grasses show minimal response to cultural inputs. HortTechnology 21:443–450 http://horttech.ashspublications.org/content/21/4/443.fullCrossRefGoogle Scholar
  121. Thomas H (1992) Cytogenetics of Avena. In: Marshall HG, Sorrells ME (eds) Oat science and technology, ASA/CSSA Monograph. American Society of Agronomy, Madison, pp 473–507Google Scholar
  122. Till-Bottraud I, Reboud X, Brabant P, Lefranc M, Rherissi B, Vedel F, Darmency H (1992) Outcrossing and hybridization in wild and cultivated foxtail millets: consequences for the release of transgenic crops. Theor Appl Genet 83:940–946. https://doi.org/10.1007/BF00232954CrossRefPubMedGoogle Scholar
  123. Triplett JK, Wang Y, Zhong J, Kellogg EA (2012) Five nuclear loci resolve the polyploid history of switchgrass (Panicum virgatum L.) and relatives. PLoS One 7:e38702. https://doi.org/10.1371/journal.pone.0038702CrossRefPubMedPubMedCentralGoogle Scholar
  124. Trucco F, Tranel PJ (2011) Amaranthus. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, vegetables, vol 5. Springer, Berlin/Heidelberg, pp 11–21. https://doi.org/10.1007/978-3-642-20450-0_2CrossRefGoogle Scholar
  125. Upadhyaya HD, Vetriventhan M, Dwivedi SL, Pattanashetti SK, Singh SK (2016) Proso, barnyard, little, and kodo millets. In: Singh M, Upadhyaya HD (eds) Genetic and genomic resources for grain cereals improvement. Academic, Elsevier, Waltham, pp 321–343CrossRefGoogle Scholar
  126. USDA, ARS, National Plant Germplasm System (2017) Germplasm Resources Information Network (GRIN Global) database. National Germplasm Resources Laboratory, Beltsville. https://www.ars-grin.gov/npgs/acc/acc_queries.html. Accessed 27 Sept 2017Google Scholar
  127. USFWS, U.S. Fish & Wildlife Service (2017) Species Information: threatened and endangered animals and plants (on-line resource). https://www.fws.gov/endangered/. Accessed 27 Sept 2017
  128. Valdés-Reyna J, Zuloaga FO, Morrone O, Aragón L (2009) El género Panicum (Poaceae: Panicoideae) en el noreste de México. Bol Soc Bot Méx 84:59–82Google Scholar
  129. Van Wychen L (2016) 2015 Survey of the most common and troublesome weeds in the United States and Canada. Weed Science Society of America National Weed Survey Dataset. Available via http://wssa.net/wp-content/uploads/2015-Weed-Survey_FINAL1.xlsx. Accessed 14 Oct 2016
  130. Vetriventhan M, Upadhyaya HD, Dwivedi SL, Pattanashetti SK, Singh SK (2015) Finger and foxtail millets. In: Singh M, Upadhyaya HD (eds) Genetic and genomic resources for grain cereals improvement. Academic, Elsevier, Waltham, pp 291–319Google Scholar
  131. Villaseñor JL (2016) Checklist of the native vascular plants of Mexico. Rev Mex Biodivers 87:559. https://doi.org/10.1016/j.rmb.2016.06.017CrossRefGoogle Scholar
  132. von Bothmer R, Jacobsen N, Baden C, Jorgensen RB, Linde-Laursen I (1991) An ecogeographical study of the genus Hordeum. Systematic and Ecogeographic Studies on Crop Gene pools 7. IBPGR, RomeGoogle Scholar
  133. von Bothmer R, Baden C, Jacobsen NH (2007) Hordeum L. In: Flora of North America Editorial Committee (ed) Flora of North America North of Mexico, vol 24. Oxford University Press, New York, pp 241–252Google Scholar
  134. Walsh BM, Adhikary D, Maughan PJ, Emshwiller E, Jellen EN (2015) Chenopodium polyploidy inferences from salt overly sensitive 1 (SOS1) data. Am J Bot 102:533–543. https://doi.org/10.3732/ajb.1400344CrossRefPubMedGoogle Scholar
  135. Wang R, Hunt HV, Qiao Z, Wang L, Han Y (2016) Diversity and cultivation of broomcorn millet (Panicum miliaceum L.) in China: a review. Econ Bot 70:332. https://doi.org/10.1007/s12231-016-9357-8CrossRefGoogle Scholar
  136. Ward SM, Johnson DL (1993) Cytoplasmic male sterility in quinoa. Euphytica 66:217–223. https://doi.org/10.1007/BF00025306CrossRefGoogle Scholar
  137. Ward SM, Webster TM, Steckel LE (2013) Palmer amaranth (Amaranthus palmeri): a review. Weed Technol 27:12–27. https://doi.org/10.1614/WT-D-12-00113.1CrossRefGoogle Scholar
  138. Waselkov KE, Olsen KM (2014) Population genetics and origin of the native North American agricultural weed waterhemp (Amaranthus tuberculatus; Amaranthaceae). Am J Bot 101:1726–1736. https://doi.org/10.3732/ajb.1400064CrossRefPubMedGoogle Scholar
  139. Wassom JJ, Tranel PJ (2005) Amplified fragment length polymorphism-based genetic relationships among weedy Amaranthus species. J Hered 96:410–416. https://doi.org/10.1093/jhered/esi065CrossRefPubMedGoogle Scholar
  140. Wilson HD, Heiser CB (1979) The origin and evolutionary relationships of ‘Huauzontle’ (Chenopodium nuttalliae Safford), domesticated chenopod of Mexico. Am J Bot 66:198–206CrossRefGoogle Scholar
  141. Wu G (2015) Nutritional properties of quinoa. In: Murphy K, Matanguihan JB (eds) Quinoa: improvement and sustainable production. Wiley, Hoboken, pp 193–210. https://doi.org/10.1002/9781118628041.ch11CrossRefGoogle Scholar
  142. Wunderlin RP, Hansen BF, Franck AR, Essig FB (2017) Atlas of Florida plants. http://florida.plantatlas.usf.edu/. [Landry SM, Campbell KN (application development), USF Water Institute.] Institute for Systematic Botany, University of South Florida, Tampa. Accessed 27 Sept 2017

Copyright information

© This is a U.S. Government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  • David M. Brenner
    • 1
    Email author
  • Harold E. Bockelman
    • 2
  • Karen A. Williams
    • 3
  1. 1.Department of Agronomy/North Central Regional Plant Introduction StationAmesUSA
  2. 2.USDA, ARS National Small Grains CollectionAberdeenUSA
  3. 3.USDA, Agricultural Research Service, Beltsville Agricultural Research Center, National Germplasm Resources LaboratoryBeltsvilleUSA

Personalised recommendations