Advertisement

Crop Wild Relatives of Grape (Vitis vinifera L.) Throughout North America

  • Claire C. HeinitzEmail author
  • Jake Uretsky
  • Jean C. Dodson Peterson
  • Karla G. Huerta-Acosta
  • M. Andrew Walker
Chapter

Abstract

Although cultivated grapevines (Vitis vinifera L.) were domesticated from their closest relative in Central Asia, grape wild relatives from North America are vital due to their use as grafted rootstocks. Rootstocks derived from North American Vitis species are critical to the global wine, table, and raisin grape industries for resistance to the root pest phylloxera (Daktulosphaira vitifoliae). These rootstocks can also provide other benefits such as cold and drought tolerance, nematode and disease resistance, and control over vigor and phenology. Phylogenetic studies of the many Vitis species native to North America often disagree on the number of species and their boundaries, specifically in the Southwestern United States and Mexico. The wild vines are all dioecious and, with the exception of subgenus Muscadinia Planchon, interfertile – allowing for interspecific hybridization wherever ranges overlap. A better understanding of the relationships between North American Vitis species is needed to identify gaps in the current ex situ germplasm collections. Additionally, efforts must be made to safeguard dwindling populations of some species in their native environments. Conservation of these valuable genetic resources will ensure that grape breeders throughout the world have the necessary diversity to adapt to a changing environment.

Keywords

Crop wild relatives Grapevine breeding Vitis Genetic resources 

References

  1. Alkhalaf M (2007) Resveratrol-induced apoptosis is associated with activation of p53 and inhibition of protein translation in T47D human breast cancer cells. Pharmacology 80:134–143CrossRefGoogle Scholar
  2. Alleweldt G (1980) The breeding of fungus-and phylloxera-resistant grapevine varieties. In: Proceedings of the 3rd international symposium on grape breeding, Davis, 15–18 June 1980Google Scholar
  3. Alleweldt G, Spiegel-Roy P, Reisch B (1990) Grapes (Vitis). In: Moore JN, Ballington, Jr JR (eds) Genetic resources of temperate fruit and nut crops, pp. 291–337. Acta Hort 290Google Scholar
  4. Amerine MA, Singleton VL (1977) Wine: an introduction. University of California Press, Berkeley/Los AngelesGoogle Scholar
  5. Aradhya M, Wang Y, Walker MA et al (2013) Genetic diversity, structure, and patterns of differentiation in the genus Vitis. Plant Syst Evol 299:317–330. https://doi.org/10.1007/s00606-012-0723-4CrossRefGoogle Scholar
  6. Arnold C, Gillet F, Gobat JM (1998) Occurrence of the wild vine Vitis vinifera ssp. silvestris in Europe. Vitis 37:159–170Google Scholar
  7. Arroyo-García R, Ruiz-García L, Bolling L et al (2006) Multiple origins of cultivated grapevine (Vitis vinifera L. ssp. sativa) based on chloroplast DNA polymorphisms. Mol Ecol 15:3707–3714. https://doi.org/10.1111/j.1365-294X.2006.03049.xCrossRefPubMedGoogle Scholar
  8. Bailey LH (1934) The species of grapes peculiar to North America, IthacaGoogle Scholar
  9. Barba P, Cadle-Davidson L, Harriman J et al (2014) Grapevine powdery mildew resistance and susceptibility loci identified on a high-resolution SNP map. Theor Appl Genet 127:73–84. https://doi.org/10.1007/s00122-013-2202-xCrossRefPubMedGoogle Scholar
  10. Bioletti FT, Flossfeder FCH, Way AE (1921) Phylloxera-resistant stocks. Agricultural Experiment Station, BerkeleyGoogle Scholar
  11. Blanc S, Wiedemann-Merdinoglu S, Dumas V et al (2012) A reference genetic map of Muscadinia rotundifolia and identification of Ren5, a new major locus for resistance to grapevine powdery mildew. Theor Appl Genet 125:1663–1675. https://doi.org/10.1007/s00122-012-1942-3CrossRefPubMedGoogle Scholar
  12. Bouquet A (1980) Vitis x Muscadinia hybridization: A new way in grape breeding for disease resistance in France. In: Proceedings of the 3rd international symposium on grape breeding, Davis, 15–18 June 1980Google Scholar
  13. Brizicky GK (1965) The genera of Vitaceae in the southeastern United States. Arnold Arboretum of Harvard University, Cambridge, MAGoogle Scholar
  14. Cadle-Davidson L (2008) Variation within and between Vitis spp. for foliar resistance to the downy mildew pathogen Plasmopara viticola. Plant Dis 92:1577–1584. https://doi.org/10.1094/PDIS-92-11-1577CrossRefPubMedGoogle Scholar
  15. Campbell C (2006) The botanist and the vintner: how wine was saved for the world. Algonquin Books, Chapel HillGoogle Scholar
  16. Catling PM, Mitrow G (2005) The dune race of Vitis riparia in Ontario: taxonomy, conservation and biogeography. Can J Plant Sci 85:407–415CrossRefGoogle Scholar
  17. Chataigner C (1995) La Transcaucasie au néolithique et au chalcolithique. British Archaeological Reports LimitedGoogle Scholar
  18. Clark JR, Barchenger DW (2014) Breeding Muscadine grapes in Arkansas, USA: a new initiative. In: XI international conference on grapevine breeding and genetics 1082. pp 95–98Google Scholar
  19. Clark JR, Moore JN (2015) “Faith”, gratitude’, “hope”, and “joy” seedless table grapes from Arkansas, USA. Acta Hortic 1082:87–94CrossRefGoogle Scholar
  20. Cline B, Fisk C (2006) Overview of muscadine grape acreage, cultivars and production areas in the southeastern U.S. Muscadine Workshop for Cooperative Extension Agents. Kenansville, 13–15 September 2006. http://www.smallfruits.org/CoAgentTraining/Sept06Training/No1Muscadine_acres_and_cultivars.pdf
  21. Comeaux BL (1984) Taxonomic studies on certain native grapes of eastern North Carolina. Dissertation, North Carolina State UniversityGoogle Scholar
  22. Comeaux B (1987) Studies on Vitis champinii. In: Proceedings of the Texas Grape Growers Association 11th Annual Conference. San Antonio, pp 158–162Google Scholar
  23. Connecticut Department of Environmental Protection (1998) Endangered, threatened and special concern plants (20 October 2002). State of Connecticut, ConnecticutGoogle Scholar
  24. Conner PJ (2010) A century of muscadine grape (Vitis rotundifolia Michx.) breeding at the University of Georgia. J Am Pomol Soc 64:78–82Google Scholar
  25. Dalbó MA, Ye GN, Weeden NF et al (2001) Marker-assisted selection for powdery mildew resistance in grapes. J Am Soc Hortic Sci 126:83–89CrossRefGoogle Scholar
  26. Dangl GS, Mendum ML, Yang J et al (2015) Hybridization of cultivated Vitis vinifera with wild V. Californica and V. girdiana in California. Ecol Evol 5:5671–5684CrossRefGoogle Scholar
  27. Dearing C (1917) Muscadine grape breeding: the native grape of the Southeastern United States has been hybridized successfully with the European grape—valuable self-fertile varieties produced.—a new possibility for the cut-over pine lands of the south. J Hered 8:409–424CrossRefGoogle Scholar
  28. Department of Environmental Conservation (2000) Protected native plants (20 October 2002). Division of Land and Forests, New YorkGoogle Scholar
  29. Di Gaspero G, Copetti D, Coleman C et al (2012) Selective sweep at the Rpv3 locus during grapevine breeding for downy mildew resistance. Theor Appl Genet 124:277–286CrossRefGoogle Scholar
  30. Division of Nature Preserves (2002) Endangered, threatened, and rare vascular plant species documented from Indiana (20 October 2002). Indiana Department of Natural Resources, IndianaGoogle Scholar
  31. Dodson Peterson JC, Walker MA (2017) Grapevine rootstock influence on scion development and initiation of senescence. Catalyst 1:48–54Google Scholar
  32. Doyle JT (1894) Report of the Board of state Viticultural Commissioners for 1893–94. 208pGoogle Scholar
  33. Dunstan RT (1962) Some fertile hybrids of bunch and muscadine grapes. J Hered 53:299–303CrossRefGoogle Scholar
  34. Esmenjaud D, Bouquet A (2009) Selection and application of resistant germplasm for grapevine nematodes management. In: Ciancio A, Mukerji KG (eds) Integrated management of fruit crops nematodes. Springer, Dordercht, pp 195–214CrossRefGoogle Scholar
  35. Fischer BM, Salakhutdinov I, Akkurt M et al (2004) Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theor Appl Genet 108:501–515CrossRefGoogle Scholar
  36. Fisher KH (1980) Interspecific hybrids used in breeding wine grapes for southern Ontario, Canada (43 degrees North Latitude). In: Proceedings of the 3rd international symposium on grape breeding, Davis, 15–18 June 1980Google Scholar
  37. Fort KP, Heinitz CC, Walker MA (2015) Chloride exclusion patterns in six grapevine populations. Aust J Grape Wine Res 21:147–155. https://doi.org/10.1111/ajgw.12125CrossRefGoogle Scholar
  38. Fort K, Fraga J, Grossi D, Walker MA (2017) Early measures of drought tolerance in four grape rootstocks. J Am Soc Hortic Sci 142:36–46CrossRefGoogle Scholar
  39. Franco-Mora O, Cruz-Castillo JG (2012) La vid silvestre en México. Toluca, Estado de México, Universidad Autónoma del Estado de MéxicoGoogle Scholar
  40. Franco-Mora O, Salomon-Castaño J, Morales P et al (2015) Acidos grasos y parametros de calidad del aceite de semilla de uva silvestre (Vitis spp.). Sci Agropecu 6:271–278CrossRefGoogle Scholar
  41. Fung RWM, Gonzalo M, Fekete C et al (2008) Powdery mildew induces defense-oriented reprogramming of the transcriptome in a susceptible but not in a resistant grapevine. Plant Physiol 146:236–249. https://doi.org/10.1104/pp.107.108712CrossRefPubMedPubMedCentralGoogle Scholar
  42. Galet P (1988) Cépages et vignobles de France Tome 1. Les Vignes Américaines, 2nd edn. C. Déhan, Montpellier [France]Google Scholar
  43. Granett J, Timper P, L a L (1985) Grape Phylloxera (Daktulosphaira vitifoliae) (Homoptera: Phylloxeridae) biotypes in California. J Econ Entomol 78:1463–1467CrossRefGoogle Scholar
  44. Granett J, Goheen AC, Lider LA, White JJ (1987) Evaluation of grape rootstocks for resistance to type A and type B grape phylloxera. Am J Enol Vitic 38:298–300Google Scholar
  45. Grassi F, Labra M, Imazio S et al (2003) Evidence of a secondary grapevine domestication Centre detected by SSR analysis. Theor Appl Genet 107:1315–1320CrossRefGoogle Scholar
  46. Hatch SL, Gandhi KN, Brown LE (1990) Checklist of the Vascular Plants of Texas, publication MP-1655 of the Texas Agricultural Experiment Station. Texas A&M University, College Station, TXGoogle Scholar
  47. Hay WT, Vaughn SF, Byars JA et al (2017) Physical, rheological, functional, and film properties of a novel emulsifier: frost grape polysaccharide from Vitis riparia Michx. J Agric Food Chem 65:8754–8762CrossRefGoogle Scholar
  48. Hedrick UP, Booth NO, Dorsey MJ et al (1908) The grapes of New York. JB Lyon Company, State printers, AlbanyGoogle Scholar
  49. Heinitz C (2016) Characterization of Vitis Species from the Southwest United States and Mexico for breeding and conservation. Dissertation, University of California, DavisGoogle Scholar
  50. Heinitz CC, Fort K, Walker MA (2015) Developing drought and salt resistant grape rootstocks. Acta Hortic 1082:305–312CrossRefGoogle Scholar
  51. Hemstad PR, Luby JJ (2000) Utilization of vitis riparia for the development of new wine varieties with resistance to disease and extreme cold. Acta Hortic 528:487–490CrossRefGoogle Scholar
  52. Hengl T, de Jesus JM, Heuvelink GBM et al (2017) SoilGrids250m: global gridded soil information based on machine learning. PLoS One 12:e0169748CrossRefGoogle Scholar
  53. Hijmans R, Cameron S, Parra J et al (2005) WORLDCLIM--a set of global climate layers (climate grids). Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  54. Huber F, Röckel F, Schwander F et al (2016) A view into American grapevine history: Vitis vinifera cv. “Sémillon” is an ancestor of “Catawba” and “Concord.”. Vitis 55:53–56. https://doi.org/10.5073/vitis.2016.55.53-56CrossRefGoogle Scholar
  55. Jang M, Cai L, Udeani GO et al (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science (80- ) 275:218–220CrossRefGoogle Scholar
  56. Jelenkovic G, Olmo HP (1968) Cytogenetics of Vitis. III. Partially fertile F1 diploid hybrids between V. vinifera L. and V. rotundifolia Michx. Vitis 7:8–18Google Scholar
  57. Jiménez-Martinez JH, Gutiérrez-Martinez MG, Franco-Mora O et al (2013) Micropropagacion de vides silvestres (Vitis spp.) del centro de México. Phyton (Buenos Aires) 82:107–112Google Scholar
  58. Kentucky State Nature Preserves Commission (2000) Endangered, threatened, and special concern species (20 October 2002). Kentucky State Nature Preserves Commission, KentuckyGoogle Scholar
  59. Ketsa S. Verheij EWM (1992) Vitis vinifera L. In Plant resources of south-east asia 2:Edible fruits and nuts (ed. EWM Verheij & RE Coronel), pp. 304–310. Bogor, Indonesia:ROSEAGoogle Scholar
  60. Kirchheimer F (1939) Rhamnales. I. Vitaceae Fossilium catalogues, Vol. 2 (Plantae). Jongmans Faller, Neubrandenburg, pp 1–153Google Scholar
  61. Knipfer T, Eustis A, Brodersen C, Walker AM, McElrone AJ (2015) Grapevine species from varied native habitats exhibit differences in embolism formation/repair associated with leaf gas exchange and root pressure. Plant, Cell & Environment 38(8):1503–1513Google Scholar
  62. Leathers TD, Price NPJ, Vaughn SF, Nunnally MS (2017) Reduced-molecular-weight derivatives of frost grape polysaccharide. Int. J. Biol. Macromol 105:1166–1170CrossRefGoogle Scholar
  63. Levadoux LD (1956) Wild and cultivated populations of Vitis vinifera L. Annales de l’Amelioration des Plantes. 6:59–118 Google Scholar
  64. Lider LA (1958) Phylloxera-resistant grape rootstocks for the coastal valleys of California. California Agricultural Experiment Station, BerkeleyCrossRefGoogle Scholar
  65. Londo J, Martinson T (2015) Geographic trend of bud hardiness response in Vitis riparia. Acta Hortic 1082:299–304CrossRefGoogle Scholar
  66. Lu J, Schell L, Ramming DW (2000) Interspecific hybridization between Vitis rotundifolia and Vitis vinifera and evaluation of the hybrids. Acta Hortic 528:481–486CrossRefGoogle Scholar
  67. Luby JJ (1991) Breeding cold-hardy fruit crops in Minnesota. Hortscience 26:507–512CrossRefGoogle Scholar
  68. Luna-Gaona G, Castillo JGC, Portilla EP et al (2010) Distribucion geografica y aprovechamiento de las uvas silvestres (Vitis spp.) de la region totonaca en la Sierra Norte de Puebla. Rev Geogr Agric 45:39–47Google Scholar
  69. Mahanil S, Reisch BI, Owens CL, et al (2007) Resistance gene analogs from Vitis cinerea, Vitis rupestris, and Vitis hybrid Horizon. Am J Enol Vitic 58:484–493Google Scholar
  70. Maine Natural Areas Program (1999) Maine’s rare, threatened, and endangered plants (20 October 2002). Maine Department of Conservation, MaineGoogle Scholar
  71. Marguerit E, Boury C, Manicki A et al (2009) Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine. Theor Appl Genet 118:1261–1278. https://doi.org/10.1007/s00122-009-0979-4CrossRefPubMedGoogle Scholar
  72. Maryland Natural Heritage Program (1997) Rare, threatened and endangered plants of Maryland (20 October 2002). Maryland Department of Natural Resources, MarylandGoogle Scholar
  73. McGovern PE (2013) Ancient wine: the search for the origins of viniculture. Princeton University Press, PrincetonCrossRefGoogle Scholar
  74. McGovern PE, Michel RH (1995) The analytical and archaeological challenge of detecting ancient wine: two case studies from the ancient near east. In: McGovern PE, Fleming SJ, Katz S (eds) The origins and ancient history of wine. Gordon and Breach, New York, pp 57–67Google Scholar
  75. McGovern PE, Glusker DL, Exner LJ, Voigt MM (1996) Neolithic resinated wine. Nature 381:480. https://doi.org/10.1038/381480a0CrossRefGoogle Scholar
  76. Merdinoglu D, Wiedeman-Merdinoglu S, Coste P et al (2003) Genetic analysis of downy mildew resistance derived from Muscadinia rotundifolia. Proceedings of the eighth international conference on grape genetics and breeding. Acta Hortic 603:451–456CrossRefGoogle Scholar
  77. Michigan Natural Features Inventory (1999) Michigan’s special plants (20 October 2002). Michigan Department of Natural Resources, MichiganGoogle Scholar
  78. Moore MO (1991) Classification and systematics of eastern north American Vitis L. Vitaceae north of Mexico. SIDA Contrib Bot 14:339–367Google Scholar
  79. Morano L, Kliewer WM (1994) Root distribution of three grapevine rootstocks grafted to cabernet sauvignon grown on a very gravelly clay loam soil in Oakville, California. Am J Enol Vitic 45:345–348Google Scholar
  80. Morano LD, Walker MA (1995) Soils and plant communities associated with three Vitis species. Am Midl Nat 134:254–263CrossRefGoogle Scholar
  81. Mortensen JA (1981) Sources and inheritance of resistance to anthracnose in Vitis. J Hered 72:423–426CrossRefGoogle Scholar
  82. Mullins MG, Bouquet A, Williams LE (1992) Biology of the grapevine. Cambridge University Press, CambridgeGoogle Scholar
  83. Munson TV (1909) Foundations of American grape culture. Orange Judd Company, New YorkCrossRefGoogle Scholar
  84. NC State Extension (2016) Muscadine grapes. North Carolina Cooperative Extension. https://grapes.ces.ncsu.edu. Accessed 8 Feb 2017
  85. Olien WC (1990) The muscadine grape: botany, viticulture, history, and current industry. HortSci (USA) 25:732–739CrossRefGoogle Scholar
  86. Olmo HP (1971) Vinifera rotundifolia hybrids as wine grapes. Am J Enol Vitic 22:87–91Google Scholar
  87. Padgett-Johnson M, Williams LE, Walker MA (2003) Vine water relations, gas exchange, and vegetative growth of seventeen Vitis species grown under irrigated and nonirrigated conditions in California. J Am Soc Hortic Sci 128:269–276CrossRefGoogle Scholar
  88. Pap D, Miller AJ, Londo JP, Kovakcs LG (2015) Population structure of Vitis rupestris, an important resource for viticulture. Am J Enol Vitic 66:403–410. https://doi.org/10.5344/ajev.2015.15012CrossRefGoogle Scholar
  89. Patel GI, Olmo HP (1955) Cytogenetics of Vitis: I. The hybrid V. vinifera x V. rotundifolia. Am J Bot 42:141–159CrossRefGoogle Scholar
  90. Pauquet J, Bouquet A, This P, Adam-Blondon A-F (2001) Establishment of a local map of AFLP markers around the powdery mildew resistance gene run 1 in grapevine and assessment of their usefulness for marker assisted selection. Theor Appl Genet 103:1201–1210. https://doi.org/10.1007/s001220100664CrossRefGoogle Scholar
  91. Pavek DS, Lamboy WF, Garvey EJ (2000) In situ conservation of America’s wild grapes. Hortscience 36:232–235CrossRefGoogle Scholar
  92. Pavek DS, Lamboy WF, Garvey EJ (2003) Selecting in situ conservation sites for grape genetic resources in the USA. Genet Resour Crop Evol 50:165–173CrossRefGoogle Scholar
  93. Pearson RC, Goheen AC (1988) Compendium of grape diseases. APS Press, St. PaulGoogle Scholar
  94. Peros JP, Berger G, Portemont A et al (2011) Genetic variation and biogeography of the disjunct Vitis subg. Vitis (Vitaceae). J Biogeogr 38:471–486. https://doi.org/10.1111/j.1365-2699.2010.02410.xCrossRefGoogle Scholar
  95. Pierquet P, Stushnoff C (1980) Relationship of low temperature exotherms to cold injury in Vitis riparia Michx. Am J Enol Vitic 31:1–6Google Scholar
  96. Pongracz DP (1983) Rootstocks for grape-vines. David Philip, Cape TownGoogle Scholar
  97. Price NPJ, Vermillion KE, Eller FJ, Vaughn SF (2015) Frost grape polysaccharide (FGP), an emulsion-forming Arabinogalactan gum from the stems of native north American grape species Vitis riparia Michx. J Agric Food Chem 63:7286–7293CrossRefGoogle Scholar
  98. Rahemi A, Dale A, Fisher H et al (2016) A report on Vitis riparia in Ontario, Canada. Acta Hortic 1136:33–38CrossRefGoogle Scholar
  99. Ramming DW (2010) Greenhouse screening of grape rootstock populations to determine inheritance of resistance to phylloxera. Am J Enol Vitic 61:234–239Google Scholar
  100. Reimer FC (1909) Scuppernong and other muscadine grapes: origin and importance. North Carolina Agricultural Experiment Station of the College of Agriculture and Mechanic ArtsGoogle Scholar
  101. Reisch BI, Pratt C (1996) Grapes. In: Janick J, Moore JN (eds) Fruit breeding, vol. II: vine and small fruit crops. Wiley, New York, pp 297–369Google Scholar
  102. Reisch B, Pool R, Peterson D, et al (1993) Wine and juice grape varieties for cool climates. A Cornell Coop Ext Publ 2:6. doi: https://doi.org/10.1007/s13398-014-0173-7.2
  103. Reisch BI, Owens CL, Cousins PS (2012) Grape. In: Fruit breeding. Springer, New York, pp 225–262CrossRefGoogle Scholar
  104. Riaz S, Krivanek AF, Xu K, Walker MA (2006) Refined mapping of the Pierce’s disease resistance locus, PdR1, and Sex on an extended genetic map of Vitis rupestris × V. arizonica. Theor Appl Genet 113:1317–1329. https://doi.org/10.1007/s00122-006-0385-0
  105. Riaz S, Tenscher AC, Ramming DW, Walker MA (2011) Using a limited mapping strategy to identify major QTLs for resistance to grapevine powdery mildew (Erysiphe necator) and their use in marker-assisted breeding. Theor Appl Genet 122:1059–1073. https://doi.org/10.1007/s00122-010-1511-6CrossRefPubMedGoogle Scholar
  106. Robinson J, Harding J, Vouillamoz J (2012) Wine grapes. Allen Lane, LondonGoogle Scholar
  107. Rühl EH (1991) Effect of potassium supply on cation uptake and distribution in grafted vitis champinii and vitis berlandieri x vitis rupestris rootstocks. Aust J Exp Agric 31:687–691. https://doi.org/10.1071/EA9910687CrossRefGoogle Scholar
  108. Rühl EH (1992) Effect of K supply and relative humidity on ion uptake and distribution on two grapevine rootstock varieties. Vitis 31:23–33Google Scholar
  109. Sabas-Chavez CC, Mora OF, Rubi-Arriaga M et al (2016) Tamaño y dulzor del fruto de ocho accesiones de Vitis spp. en tres años continuos. Nova Sci 8:233–248CrossRefGoogle Scholar
  110. Sauer MR (1968) Effects of grape-vine rootstocks on chloride concentration in sultana scions. Vitis 7:223–226Google Scholar
  111. Schmid J, Manty F, Cousins P (2009) Collecting vitis berlandieri from native habitat sites. Acta Hortic 827:151–154CrossRefGoogle Scholar
  112. Smith BP, Clingeleffer PR, Morales NB, et al (2014) Development of Australian rootstocks with root-knot nematode resistance and low potassium transport. Acta Horticulturae (1046):231–240Google Scholar
  113. Staudt G, Kassemeyer H (1995) Evaluation of downy mildew resistance in various accessions of wild Vitis species. Vitis 34:225–228Google Scholar
  114. Stein JH, Keevil JG, Wiebe DA et al (1999) Purple grape juice improves endothelial function and reduces the susceptibility of LDL cholesterol to oxidation in patients with coronary artery disease. Circulation 100:1050–1055CrossRefGoogle Scholar
  115. Stover E, Aradhya M, Yang J, Bautista J, Dangl GS (2009) Investigations into the origin of “Norton” grape using SSR markers. Proc Fla State Hort Soc 122:14–24Google Scholar
  116. Tennessee Natural Heritage Program (2002) Rare plant list (20 October 2002). Department of Environment and Conservation, TennesseeGoogle Scholar
  117. Thompson SA (1997) Vascular plants: review of status in Pennsylvania (20 October 2002). Department of Conservation and Natural Resources, PennsylvaniaGoogle Scholar
  118. Tiffney BH, Barghoorn ES (1976) Fruits and seeds of the Brandon lignite. I. Vitaceae. Rev Palaeobot Palynol 22:169–191CrossRefGoogle Scholar
  119. Tobar-Reyes JR, Franco-Mora O, Morales-Rosales EJ, Cruz-Castillo JG (2009) Contenido de resveratrol en hojas de vides silvestres (Vitis spp.) mexicanas. Rev la Fac Ciencias Agrar 41:127–137Google Scholar
  120. Tregeagle JM, Tisdall JM, Blackmore DH, Walker RR (2006) A diminished capacity for chloride exclusion by grapevine rootstocks following long-term saline irrigation in an inland versus a coastal region of Australia. Aust J Grape Wine Res 12:178–191CrossRefGoogle Scholar
  121. Trondle D, Schroder S, Kassemeyer HH et al (2010) Molecular phylogeny of the genus Vitis (Vitaceae) based on plastid markers. Am J Bot 97:1168–1178. https://doi.org/10.3732/ajb.0900218CrossRefPubMedGoogle Scholar
  122. USDA (2013) Agricultural overview – California agricultural statistics, crop year 2013. United States Dep Agric (USDA), Natl Agric Stat Serv 1–10Google Scholar
  123. USDA (2016) Non-Citrus Fruits and Nuts 2015 Summary. http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1113
  124. Viala P, Ravaz L (1903) American vines (resistant stock): their adaptation, culture, grafting and propagation. Press of Freygang-Leary Company, San FranciscoGoogle Scholar
  125. Wada EB (2008) Systematics and evolution of Vitis. Dissertation, University of California, DavisGoogle Scholar
  126. Walker MA, Jin Y (2000) Breeding Vitis rupestris x Muscadinia rotundifolia rootstocks to control Xiphinema index and fanleaf degeneration. Acta Hortic 528:517–522CrossRefGoogle Scholar
  127. Walker MA, Lider LA, Goheen AC, Olmo HP (1991) VR O39-16. Hortscience 26:1224–1225CrossRefGoogle Scholar
  128. Wan Y, Schwaninger HR, Baldo AM et al (2013) A phylogenetic analysis of the grape genus (Vitis L.) reveals broad reticulation and concurrent diversification during neogene and quaternary climate change. BMC Evol Biol 13:141. https://doi.org/10.1186/1471-2148-13-141CrossRefPubMedPubMedCentralGoogle Scholar
  129. Wells JM, Raju BC, Hung H-Y et al (1987) Xylella fastidiosa gen. nov., sp. nov: gram-negative, xylem-limited, fastidious plant bacteria related to Xanthomonas spp. Int J Syst Evol Microbiol 37:136–143Google Scholar
  130. Wolpert JA, Smart DR, Anderson M (2005) Lower petiole potassium concentration at bloom in rootstocks with Vitis berlandieri genetic backgrounds. Am J Enol Vitic 56:163–169Google Scholar
  131. Xie X, Agüero CB, Wang Y, Walker MA (2015) In vitro induction of tetraploids in Vitis X Muscadinia hybrids. Plant Cell Tissue Organ Cult 122:675–683. https://doi.org/10.1007/s11240-012-0191-0CrossRefGoogle Scholar
  132. Xu K, Riaz S, Roncoroni NC, et al (2008) Genetic and QTL analysis of resistance to Xiphinema index in a grapevine cross. Theoretical and Applied Genetics 116(2):305–311Google Scholar
  133. Zhang J, Hausmann L, Eibach R, et al (2009) A framework map from grapevine V3125 (Vitis vinifera `Schiava grossa’ x `Riesling’) x rootstock cultivar `Börner’ (Vitis riparia x Vitis cinerea) to localize genetic determinants of phylloxera root resistance. Theor Appl Genet 119:1039–1051. https://doi.org/10.1007/s00122-009-1107-1
  134. Zohary D (1996) The mode of domestication of the founder crops of the southwest Asian agriculture. In: Harris DR (ed) The origin and spread of agriculture and pastoralism in Eurasia. University College London Press, London, pp 142–158Google Scholar
  135. Zohary D, Hopf M (2000) Domestication of plants in the old world, 3rd edn. Oxford University Press, New York, pp 151–159Google Scholar
  136. Zohary D, Spiegel-Roy P (1975) Beginnings of fruit growing in the old world. Science (80- ) 187:319–327. https://doi.org/10.1080/07929978.2015.1007718CrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  • Claire C. Heinitz
    • 1
    Email author
  • Jake Uretsky
    • 2
  • Jean C. Dodson Peterson
    • 3
  • Karla G. Huerta-Acosta
    • 2
  • M. Andrew Walker
    • 2
  1. 1.USDA Agricultural Research ServiceNational Arid Land Plant Genetic Resources UnitParlierUSA
  2. 2.Department of Viticulture & EnologyUniversity of California-DavisDavisUSA
  3. 3.Wine and ViticultureCalifornia Polytechnic State UniversitySan Luis ObispoUSA

Personalised recommendations