Advertisement

Wild Relatives of Maize

  • Carlos I. Cruz-CárdenasEmail author
  • Moisés Cortés-Cruz
  • Candice A. Gardner
  • Denise E. Costich
Chapter

Abstract

Crop domestication changed the course of human evolution, and domestication of maize (Zea mays L. subspecies mays), today the world’s most important crop, enabled civilizations to flourish and has played a major role in shaping the world we know today. Archaeological and ethnobotanical research help us understand the development of the cultures and the movements of the peoples who carried maize to new areas where it continued to adapt. Ancient remains of maize cobs and kernels have been found in the place of domestication, the Balsas River Valley (~9,000 years before present era), and the cultivation center, the Tehuacan Valley (~5,000 years before present era), and have been used to study the process of domestication. Paleogenomic data showed that some of the genes controlling the stem and inflorescence architecture were comparable to modern maize, while other genes controlling ear shattering and starch biosynthesis retain high levels of variability, similar to those found in the wild relative teosinte. These results indicate that the domestication process was both gradual and complex, where different genetic loci were selected at different points in time, and that the transformation of teosinte to maize was completed in the last 5,000 years. Mesoamerican native cultures domesticated teosinte and developed maize from a 6 cm long, popping-kernel ear to what we now recognize as modern maize with its wide variety in ear size, kernel texture, color, size, and adequacy for diverse uses and also invented nixtamalization, a process key to maximizing its nutrition.

Used directly for human and animal consumption, processed food products, bioenergy, and many cultural applications, it is now grown on six of the world’s seven continents. The study of its evolution and domestication from the wild grass teosinte helps us understand the nature of genetic diversity of maize and its wild relatives and gene expression. Genetic barriers to direct use of teosinte or Tripsacum in maize breeding have challenged our ability to identify valuable genes and traits, let alone incorporate them into elite, modern varieties. Genomic information and newer genetic technologies will facilitate the use of wild relatives in crop improvement; hence it is more important than ever to ensure their conservation and availability, fundamental to future food security. In situ conservation efforts dedicated to preserving remnant populations of wild relatives in Mexico are key to safeguarding the genetic diversity of maize and its genepool, as well as enabling these species to continue to adapt to dynamic climate and environmental changes. Genebank ex situ efforts are crucial to securely maintain collected wild relative resources and to provide them for gene discovery and other research efforts.

Keywords

Maize wild relatives Crop domestication Teosinte Tripsacum In situ conservation Ex situ conservation Plant genetic resources 

Notes

Acknowledgement

The authors would like to dedicate this chapter to the threesome who collected and characterized many teosintes, under the acronym “WTS”- Wilkes, Taba, Sánchez.

References

  1. Alene AD, Menkir A, Ajala SO, Badu-Apraku B, Olanrewaju AS, Manyong VM, Ndiaye A (2009) The economic and poverty impacts of maize research in West and Central Africa. Ag Econ 40:535–550CrossRefGoogle Scholar
  2. Allaby RG (2014) Domestication syndrome in plants. In: Smith C (ed) Encyclopedia of global archeology. Springer, New York, pp 2182–2184CrossRefGoogle Scholar
  3. Anon (2016) Maize Phase II, CGIAR-Research Program on Maize. Maize Agri-Food systems Proposal 2017–2022. CGIAR, Montpellier. https://library.cgiar.org/bitstream/handle/10947/4403/2.%20MAIZE%20AFS-CRP%20and%20FP%20Narratives%20Proposal%202017-2022%20(July%2030,%202016).pdf?sequence=1Google Scholar
  4. Arnason JT, Baum B, Gale J, Lambert JDH, Bergvinson D, Philogene BJR, Serratos JA, Mihm J, Jewell DC (1994) Variation in resistance of Mexican landraces of maize to maize weevil Sitophilus zeamais, in relation to taxonomic and biochemical parameters. Euphytica 74:227–236CrossRefGoogle Scholar
  5. Bajet NB, Renfro BL, Valdez Carrasco JM (1994) Control of tar spot of maize and its effect on yield. Int J Pest Manag 40:121–125CrossRefGoogle Scholar
  6. Baute GJ, Dempewolf H, Rieseberg LH (2015) Using genomic approaches to unlock the potential of CWR for crop adaptation to climate change. In: Redden R, Yadav SS, Maxted N, Dulloo ME, Guarino L, Smith P (eds) Crop wild relatives and climate change. Wiley, Hoboken, pp 268–280. https://doi.org/10.1002/9781118854396.ch15CrossRefGoogle Scholar
  7. Beadle GW (1972) The mystery of maize. Field Mus Nat Hist Bull 43:2–11Google Scholar
  8. Beadle GW (1980) The ancestry of corn. Sci Am 242:112–119CrossRefGoogle Scholar
  9. Ben-Ari T, Makowski D (2014) Decomposing global crop yield variability. Environ Res Lett 9(2014):114011 (10pp). https://doi.org/10.1088/1748-9326/9/11/114011CrossRefGoogle Scholar
  10. Benz BF (2001) Archeological evidence of teosinte domestication from Guilá Naquitz, Oaxaca. Proc Natl Acad Sci U S A 98:2101–2103CrossRefGoogle Scholar
  11. Benz BF, Iltis H (1990) Studies in archeological maize I: the “wild” maize from San Marcos cave reexamined. Am Antiq 55(3):500–511CrossRefGoogle Scholar
  12. Benz BF, Long A (2000) Prehistoric maize evolution in the Tehuacan valley. Curr Antropol 41:459–465CrossRefGoogle Scholar
  13. Berg P, Singer M (2003) George beadle: an uncommon farmer. The emergence of genetics in the 20th century. Cold Springs Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  14. Bergquist RR (1981) Transfer from Tripsacum dactyloides to corn of a major gene locus conditioning resistance to Puccinia sorghi. Phytopathology 71:518–520CrossRefGoogle Scholar
  15. Berthaud J, Savidan Y, Barre M, Leblanc O (1995) Tripsacum: its diversity and conservation. In: Taba S (ed) Maize genetic resources. Maize Program special report. CIMMYT, Mexico, D.F., pp 74–85Google Scholar
  16. Berthaud J, Savidan Y, Barre M, Leblanc O (1997) Tripsacum. In: Fucillo D, Sears L, Stapleton P (eds) Biodiversity in trust. Cambridge University Press, Cambridge, UKGoogle Scholar
  17. Biemont C, Vierira C (2006) Junk DNA as an evolutionary force. Nature 443:521–524PubMedCrossRefGoogle Scholar
  18. Blakey CA (1993) A molecular map in Tripsacum dactyloides, Eastern Gamagrass. University of Missouri, Missouri, ColumbiaGoogle Scholar
  19. Blakey C, Costich D, Sokolov V, Islam-Faridi M (2007) Tripsacum genetics: from observations along a river to molecular genomics. Maydica 52:81–99Google Scholar
  20. Bomblies K, Doebley JF (2005) Molecular evolution of floricaula/leafy orthologs in the andropogoneae (poaceae). Mol Biol Evol 22:1082–1094PubMedCrossRefGoogle Scholar
  21. Bonzani RM, Oyuela-Caycedo A (2006) The gift of the variation and dispersion of maize: social and technological context in Amerindian societies. In: Staller JE, Tykot RH, Benz BF (eds) Histories of maize. Academic, Burlington, pp 344–356Google Scholar
  22. Boyer CD, Shannon JC (1987) Carbohydrates of the kernel. In: Watson SA, Ramstad PE (eds) Corn: chemistry and technology. American Association of Cereal Chemists, St. Paul, pp 253–272Google Scholar
  23. Brenner EA, Blanco M, Gardner C, Lübberstedt T (2012) Genotypic and phenotypic characterization of isogenic doubled haploid exotic introgression lines in maize. Mol Breed 30:1001–1016. https://doi.org/10.1007/s11032-011-9684-5CrossRefGoogle Scholar
  24. Briggs WH, McMullen MD, Gaut BS, Doebley J (2007) Linkage mapping of domestication loci in a large maize teosinte backcross resource. Genetics 177:1915–1928. https://doi.org/10.1534/genetics.107.076497CrossRefPubMedPubMedCentralGoogle Scholar
  25. Brown WL, Goodman MM (1977) Races of corn. In: Sprague GF (ed) Corn and corn improvement, Chapter 2. American Society of Agronomy, Madison, pp 49–88Google Scholar
  26. Brozynska M, Furtado A, Henry RJ (2016) Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant Biotechnol J 14:1070–1085. https://doi.org/10.1111/pbi.12454CrossRefPubMedGoogle Scholar
  27. Buckler ES, Stevens NM (2005) Maize origins, domestication and selection. In: Motley TJ, Zerega N, Cross HB (eds) Darwin’s Harvest. New approaches to the origins, evolution, and conservation of crops. Columbia University Press, New York, pp 67–90Google Scholar
  28. Buckler ES, Gaut BS, McMullen MD (2006) Molecular and functional diversity of maize. Curr Opin Plant Biol 9:172–176. https://doi.org/10.1016/j.pbi.2006.01.013CrossRefPubMedGoogle Scholar
  29. Burson BL, Voigt PW, Sherman RA, Dewald CL (1990) Apomixis and sexuality in Eastern Gamagrass. Crop Sci 30:86–89CrossRefGoogle Scholar
  30. Cabanas D, Watanabe S, Higashi CHV, Bressan A (2013) Dissecting the mode of Maize chlorotic virus (Tombusviridae: Machlomovirus) transmission by Frankliniella williamsi (Thysanoptera: Thripidae). J Econ Entomol 106:16–24. https://doi.org/10.1603/EC12056CrossRefPubMedGoogle Scholar
  31. Cairns J, Crossa J, Zaidi PH, Grudloyma P, Sanchez C, Araus JJ, Thaitad S, Makumbi D, Magorokosho C, Banziger M, Menkir A, Hearne S, Atlin GN (2013) Identification of drought, heat, and combined drought and heat tolerant donors in maize. Crop Sci 53:1335–1346CrossRefGoogle Scholar
  32. Casas Salas JF, Sánchez Gonzalez JJ, Ramírez Díaz JLD, Ron Parra J, Montes Hernandez S (2001) Rendimiento y sus componentes en retrocruzas maíz-teocintle. Rev Fitotec Mex 24(1):17–26Google Scholar
  33. Cassman KG, Dobermann A, Walters DT, Yang HS (2003) Meeting cereal demand while protecting natural resources and improving environmental quality. Annu Rev Environ Resour 28:315–358. https://doi.org/10.1146/annurev.energy.28.040202.122858CrossRefGoogle Scholar
  34. Castañeda-Álvarez NP, Khoury CK, Achicanoy HA, Bernau V, Dempewolf H, Eastwood RJ, Guarino L, Harker RH, Jarvis A, Maxted N, Müller JV, Ramirez-Villegas J, Sosa CS, Struik PC, Vincent H, Toll J (2016) Global conservation priorities for crop wild relatives. Nat Plants 2:16022PubMedCrossRefGoogle Scholar
  35. Chia JM, Song C, Bradbury PJ, Costich D, de Leon N, Doebley J, Elshire RJ, Gaut B, Geller L, Glaubitz JC et al (2012) Maize hapmap2 identifies extant variation from a genome in flux. Nat Genet 44:803–807PubMedCrossRefGoogle Scholar
  36. Cohen JI, Galinat WC (1984) Potential use of alien germplasm for maize improvement. Crop Sci 24:1011–1015CrossRefGoogle Scholar
  37. Cordell LS, McBrinn ME (2012) Archeology of the southwest. Academic, San DiegoGoogle Scholar
  38. da Fonseca RR, Smith BD, Wales N, Cappellini E, Skoglund P, Fumagalli M, Samaniego JA, Carøe C, Ávila-Arcos MC, Hufnagel DE, Korneliussen TS, Vieira FG, Jakobsson M, Arriaza B, Willerslev E, Nielsen R, Hufford MB, Albrechtsen A, Ross-Ibarra J, Gilbert MTP (2015) The origin and evolution of maize in the southwestern United States. Nat Plants. https://doi.org/10.1038/NPLANTS2014.3
  39. De la Paz-Gutiérrez S, Sánchez-González JJ, Ruíz-Corral JA (2010) Diversidad de especies insectiles en maíz y teocintle en México. Folia Entomol Mex 48:103–118Google Scholar
  40. De Lange E, Balmer D, Mauch-Mani B, Turlings TCJ (2014) Insect and pathogen attack and resistance in maize and its wild ancestors, the teosintes. New Phytol 204:329–341CrossRefGoogle Scholar
  41. De Wet JMJ, Harlan JR, Brink D (1982) Systematics of Tripsacum dactyloides (Gramineae). Am J Bot 69:1251–1257CrossRefGoogle Scholar
  42. De Wet JMJ, Cohen CE, Brink D (1985) Seed proteins and systematics of Tripsacum. Biochem Syst Ecol 13:231–237CrossRefGoogle Scholar
  43. Dempewolf H, Eastwood RJ, Guarino L, Khoury CK, Müller JV, Toll J (2014) Adapting agriculture to climate change: a global initiative to collect, conserve, and use crop wild relatives. Agroecol Sustain Food Syst 38:369–377CrossRefGoogle Scholar
  44. Doebley JF (1983) The taxonomy and evolution of Tripsacum and teosinte, the closest relatives of maize. In: Gordon DT, Knoke JK, Naul LR (eds), Proc Intl Maize Virus Disease Colloquium and Workshop, the Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio. August 1982. Ohio State University, p. 15–28Google Scholar
  45. Doebley J (1990a) Molecular systematics of Zea (Gramineae). Maydica 35:143–150Google Scholar
  46. Doebley J (1990b) Molecular evidence for gene flow among Zea species. Bioscience 40(6):443–448CrossRefGoogle Scholar
  47. Doebley J (2001) George Beadle’s other hypothesis: one-gene, one-trait. Genetics 158:487–493PubMedPubMedCentralGoogle Scholar
  48. Doebley J (2004) The genetics of maize evolution. Ann Rev Genet 38:37–59PubMedCrossRefGoogle Scholar
  49. Doebley J, Iltis HH (1980) Taxonomy of Zea (Gramineae). I. A subgeneric classification with key to taxa. Am J Bot 67:982–993CrossRefGoogle Scholar
  50. Doebley J, Goodman M, Stuber CW (1987) Patterns of isozyme variation between maize and Mexican annual teosinte. Econ Bot 41(2):234–246CrossRefGoogle Scholar
  51. Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:4856–4488CrossRefGoogle Scholar
  52. Dubreuil P, Warburton ML, Chastanet M, Hoisington D, Charcosset A (2006) More on the introduction of temperate maize into Europe: large-scale bulk SSR genotyping and new historical elements. Maydica 51:281–291Google Scholar
  53. Duvick DN (1977) Genetic rates of gain in hybrid maize yields during the past 40 years. Maydica 22:187–196Google Scholar
  54. Duvick DN (2005) Genetic progress in yield of United States maize (Zea mays L.). Maydica 50:193–202Google Scholar
  55. Duvick DN, Cassman KG (1999) Post–Green revolution trends in yield potential of temperate maize in the North-Central United States (1999). Agronomy & Horticulture – Faculty Publications. Paper 96. http://digitalcommons.unl.edu/agronomyfacpub/96
  56. Evans MMS, Kermicle JL (2001) Teosinte crossing barrier1, a locus governing hybridization of teosinte with maize. Theor Appl Genet 103:259–265. https://doi.org/10.1007/s001220100549CrossRefGoogle Scholar
  57. FAOSTAT (2014) Statistics database. Food and agriculture Organization of the United. Nations, Rome. http://faostat.fao.orgGoogle Scholar
  58. Farnham DE, Benson GO, Pearce RB (2003) Corn perspective and culture. In: White P, Johnson LA (eds) Corn: chemistry and technology, 2nd edn. American Association of Cereal Chemists International, St. Paul, pp 1–33Google Scholar
  59. Farquharson LI (1955) Apomixis and polyembryony in Tripsacum dactyloides. Am J Bot 42:737–743CrossRefGoogle Scholar
  60. Flint-Garcia SA, Bodnar AL, Scott MP (2009) Wide variability in kernel composition, seed characteristics, and zein profiles among diverse maize inbreds, landraces, and teosinte. Theor Appl Genet 119:1129–1142. https://doi.org/10.1007/s00122-009-1115-1CrossRefPubMedGoogle Scholar
  61. Ford-Lloyd BV, Schmidt M, Armstrong SJ, Barazani O, Engels J, Hadas R, Maxted N (2011) Crop wild relatives-undervalued, underutilized and under threat? Bioscience 61:559–565CrossRefGoogle Scholar
  62. Fowler C (2006) The New York Times UpfrontGoogle Scholar
  63. Galinat WC (1973) Intergenomic mapping of maize, teosinte and tripsacum. Evolution 27:644–655PubMedCrossRefGoogle Scholar
  64. Gannon B, Kaliwile C, Arscott SA, Schmaelzle S, Chileshe J, Kalungwana N, Mosonda M, Pixley K, Masi C, Tanumihardjo SA (2014) Biofortified orange maize is as efficacious as a vitamin A supplement in Zambian children even in the presence of high liver reserves of vitamin A: a community-based, randomized placebo-controlled trial. Am J Clin Nutr 100(6):1541–1550PubMedPubMedCentralCrossRefGoogle Scholar
  65. Giuliano G (2017) Provitamin A biofortification of crop plants: a gold rush with many miners. Curr Opin Biotechnol 44:169–180. https://doi.org/10.1016/j.copbio.2017.02.00CrossRefPubMedGoogle Scholar
  66. Goldberg KB, Brakke MK (1987) Concentration of maize chlorotic mottle virus increased in mixed infections with maize dwarf mosaic virus, strain-B. Phytopathology 77:162–167. https://doi.org/10.1094/Phyto-77-162CrossRefGoogle Scholar
  67. Goodman MM (1978) A brief survey of the races of maize and current attempts to infer their racial relationships, Chapter 10. In: Walden DB (ed) Maize breeding and genetics. Wiley, New York, pp 143–158Google Scholar
  68. Goodman MM (1998) Research policies thwart potential payoff of exotic germplasm. Diversity (Basel) 14:30–35Google Scholar
  69. Goodman MM, Holland JB, Sanchez Gonzalez JJ (2014) Breeding and diversity. In: Wusirika RM, Lai BJ, Kole C (eds) Genetics, genomics and breeding of maize. CRC Press, New York, pp 14–50Google Scholar
  70. Gouesnard B, Rebourg C, Welcker C, Charcosset A (2002) Analysis of photoperiod sensitivity within a collection of tropical maize populations. Genet Resour Crop Evol 49:471–481CrossRefGoogle Scholar
  71. Gowda M, Das B, Makumbi D, Babu R, Semagn K, Mahuku G, Olsen MS, Bright JM, Beyene Y, Prasanna BM (2015) Genome-wide association and genomic prediction of resistance to maize lethal necrosis disease in tropical maize germplasm. Theor Appl Genet 128:1957–1968PubMedPubMedCentralCrossRefGoogle Scholar
  72. GPWG [Grass Phylogeny Working Group] (2001) Phylogeny and subfamilial classification of the grasses (Poaceae). Ann Mo Bot Garden 88:373–457CrossRefGoogle Scholar
  73. Grams GW, Blessin CW, Inglett GE (1970) Distribution of tocopherols within the corn kernel. J Am Oil Chem Soc 47:337–339PubMedCrossRefGoogle Scholar
  74. Grassini P, Eskridge KM, Cassman KG (2013) Distinguishing between yield advances and yield plateaus in historical crop production trends. Nat Commun. https://doi.org/10.1038/ncomms3918
  75. Grimanelli D, Garcia M, Kaszas E, Perotti E, Leblanc O (2003) Heterochronic expression of sexual reproductive programs during apomictic development in Tripsacum. Genetics 165:1521–1531PubMedPubMedCentralGoogle Scholar
  76. Gropper SS, Smith JL, Groff JL (2005) Perspective: phytochemicals and herbal supplements in health and disease. In: Howe E, Feldman E, Harkrader S, Roybal M (eds) Advanced nutrition and human metabolism, 4th edn. Thomson Wadsworth, Belmont, pp 123–127Google Scholar
  77. Gurney AL, Grimanelli D, Kanampiu F, Hoisington D, Scholes JD, Press MC (2003) Novel sources of resistance to Striga hermonthica in Tripsacum dactyloides, a wild relative of maize. New Phytol 160:557–568CrossRefGoogle Scholar
  78. Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13CrossRefGoogle Scholar
  79. Harjes CE, Rocheford TR, Bai L, Brutnell TP, Kandianis CB, Sowinski SG, Stapleton AE, Vallabhaneni R, Williams M, Wurtzel ET, Yan J, Buckler ES (2008) Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319:330–333PubMedPubMedCentralCrossRefGoogle Scholar
  80. Harlan JR, de Wet J (1971) Toward a rational classification of cultivated plants. Taxon 20(4):509–517CrossRefGoogle Scholar
  81. Hart JP, Means BK (2002) Maize and Villages: a summary and critical assessment of current northeast early late prehistoric evidence, Chapter18. In: Hart JP, Reith CB (eds) Northeast subsistence-settlement change: AD 700–1300. University of the State of New York, The State Education Department, Albany, pp 345–358Google Scholar
  82. Hengsdijk H, Langeveld JWA (2009) Yield trends and yield gap analysis of major crops in the world. Werkdocument 170. Statutory Research Tasks Unit for Nature and the Environment, Wageningen, 170ppGoogle Scholar
  83. Heuzé V, Tran G, Nozière P, Salgado P, Lebas F (2015) Guatemala grass (Tripsacum andersonii). Feedipedia, a programme by INRA, CIRAD, AFZ and FAO. https://feedipedia.org/node/365. Last updated on 11 May 2015, 14:30
  84. Hilton H, Gaut BS (1998) Speciation and domestication in maize and its wild relatives: evidence from the Globulin-1 gene. Genetics 150:863–872PubMedPubMedCentralGoogle Scholar
  85. Hirsch C, Hirsch CD, Brohammer AB, Bowman MJ, Soifer I, Barad O, Shem-Tov D, Baruch K, Lu F, Hernandez AG, Fields CJ, Wright CL, Koehler K, Springer NM, Buckler E, Buell CR, de Leon N, Kaeppler SM, Childs KL, Mikel M (2016) Draft assembly of elite inbred line ph207 provides insights into genomic and transcriptome diversity in maize. Plant Cell 28:2700PubMedPubMedCentralCrossRefGoogle Scholar
  86. Hock J, Kranz J, Renfro BL (1995) Studies on the epidemiology of the tar spot disease complex of maize in Mexico. Plant Pathol 44:490–502CrossRefGoogle Scholar
  87. Honsdorf N, March TJ, Berger B, Tester M, Pillen K (2014) High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines. PLoS One 9:e97047PubMedPubMedCentralCrossRefGoogle Scholar
  88. Hooker AL (1981) Resistance to Helminthosporium turcicum from Tripsacum floridanum incorporated into corn. Maize Genet Coop Newsl 55:87–88Google Scholar
  89. Huckell LW (2006) In: Staller JE, Tykot RH, Benz BF (eds) Histories of maize: multidisciplinary approaches to the prehistory, linguistics, biogeography, domestication, and evolution of maize. Elsevier Academic, Amsterdam, pp 97–107Google Scholar
  90. Hufford M, Bilinski P, Pyhajarvi T, Ross-Ibarra J (2012) Teosinte as a model system for population and ecological genomics. Trends Genet 28(12):606–615PubMedCrossRefGoogle Scholar
  91. Hufford MB, Lubinksy P, Pyhajarvi T, Devengenzo MT, Ellstrand NC, Ross-Ibarra J (2013) The genomic signature of crop-wild introgression in maize. PLoS Genet 9:e1003477. https://doi.org/10.1371/journal.pgen.1003477. [erratum: 9:10.1371/annotation/2eef7b5b-29b2-412f-8472-8fd7f9bd65ab]CrossRefPubMedPubMedCentralGoogle Scholar
  92. Hung HY, Shannon LM, Tian F, Bradbury PJ, Chen C, Flint-Garcia SA, McMullen MD, Ware D, Buckler ES, Doebley JF, Holland JB (2012) ZmCCT and the genetic basis of day-length adaptation underlying the post-domestication spread of maize. Proc Natl Acad Sci U S A. https://doi.org/10.1073/onas.1203189109
  93. Iltis HH, Doebley JF (1980) Taxonomy of Zea (Gramineae). II. Subspecific categories in the Zea mays complex and a generic synopsis. Am J Bot 67:994–1004CrossRefGoogle Scholar
  94. Janzen GM, Hufford MB (2016) Crop domestication: a sneak-peek into the midpoint of maize evolution. Curr Biol 23:1240–1242. https://doi.org/10.1016/j.cub.2016.10.045CrossRefGoogle Scholar
  95. Jensen SG, Wysong DS, Ball EM, Higley PM (1991) Seed transmission of maize chlorotic mottle virus. Plant Dis 75:497–498CrossRefGoogle Scholar
  96. Kempton JH (1937) Maize – our heritage from the Indian. (1937) Annual report of the Board of Regents of the Smithsonian Institution, pp 385–408Google Scholar
  97. Kermicle JL (2006) A selfish gene governing pollen-pistil compatibility confers reproductive isolation between maize relatives. Genetics 172:499–506. https://doi.org/10.1534/genetics.105.048645CrossRefPubMedPubMedCentralGoogle Scholar
  98. Kermicle JL, Evans MMS (2010) The Zea mays sexual compatibility gene ga2: naturally occurring alleles, their distribution, and role in reproductive isolation. J Hered 101:737–749. https://doi.org/10.1093/jhered/esq090CrossRefPubMedGoogle Scholar
  99. Kumar H (2002) Resistance in maize to the larger grain borer, Prostephanus truncates (Horn) (Coleoptera: Bostrichidae). J Stored Prod Res 38:267–280CrossRefGoogle Scholar
  100. Kurilich AC, Juvik JA (1999) Quantification of carotenoid and tocopherol antioxidants in Zea mays. J Agric Food Chem 47:1948–1955PubMedCrossRefGoogle Scholar
  101. Langridge P, Fleury D (2011) Making the most of ‘omics’ for crop breeding. Trends Biotechnol 29:33–40PubMedCrossRefGoogle Scholar
  102. Lapierre H, Signoret P-A (eds) (2004) Virus and virus diseases of Poaceae (Gramineae). Technology and engineering, Institut National de la Recherche Agronomique. France, ParisGoogle Scholar
  103. Larson SR, Doebley J (1994) Restriction site variation in the chloroplast genome of Tripsacum (Poaceae): phylogeny and rates of sequence evolution. Syst Bot 19:21–34CrossRefGoogle Scholar
  104. Leblanc O, Peel MD, Carman JG, Savidan Y (1995) Megasporogenesis and megagametogenesis in several Tripsacum species (Poaceae). Am J Bot 82:57–63CrossRefGoogle Scholar
  105. Lennon JR, Krakowsky M, Goodman M, Flint-Garcia S, Balint-Kurti PJ (2016) Identification of alleles conferring resistance to gray leaf spot in maize derived from its wild progenitor species teosinte. Crop Sci 56:209–218CrossRefGoogle Scholar
  106. Li YG, Dewald CL, Sims PL (1999) Genetic relationships within Tripsacum as detected by RAPD variation. Ann Bot 84:695–702CrossRefGoogle Scholar
  107. Little EA (2002) Kautantouwit’s legacy: calibrated dates on prehistoric maize in New England. Am Antiq 67:109–118CrossRefGoogle Scholar
  108. Liu Z, Cook J, Melia-Hancock S, Guill K, Bottoms C, Garcia A, Ott O, Nelson R, Recker J, Balint-Kurti P, Larsson S, Lepak N, Buckler E, Trimble L, Tracy W, McMullen MD, Flint-Garcia SA (2016a) Expanding maize genetic resources with pre-domestication alleles: maize-teosinte introgression populations. Plant Genome 9. https://doi.org/10.3835/plantgenome2015.07.0053
  109. Liu Z, Garcia A, McMullen MD, Flint-Garcia SA (2016b) Genetic analysis of kernel traits in maize-teosinte introgression populations. G3 (Bethesda) 6:2523–2530. https://doi.org/10.1534/g3.116.030155CrossRefGoogle Scholar
  110. Lobell DB, Cassman KG, Field CB (2009) Crop yield gaps: their importance, magnitude and causes. Annu Rev Environ Resour 34:179–204. https://doi.org/10.1146/annurev.environ.041008.093740CrossRefGoogle Scholar
  111. Louette D, Smale M (1998) Farmers’ seed selection practices and maize variety characteristics in a traditionally-based Mexican community. CIMMYT Economics working paper no. 98-04. CIMMYT, Mexico, D. F.Google Scholar
  112. Louie R (1999) Diseases caused by viruses. In: White DG (ed) Compendium of corn diseases. APS Press, St. Paul, pp 49–55Google Scholar
  113. Magoja JL, Pischedda G (1994) Maize x teosinte hybridization. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 25. Springer, Berlin, pp 84–101Google Scholar
  114. Maguire MP (1962) Common loci in corn and tripsacum. J Hered 53:87–88CrossRefGoogle Scholar
  115. Mahuku G, Lockhart BE, Wanjala B, Jones MW, Kumunye JN, Stewart LR, Cassone BJ, Sevgan S, Nyasani JO, Kusia E, Kumar PL, Niblett CL, Kiggundu GA, Pappu HR, Wangai A, Prasanna BM, Redinbaugh MG (2015) Maize lethal necrosis (MLN), and emerging threat to maize-based food security in Sub-Saharan Africa. Phytopathology 105(7):956–965. https://doi.org/10.1094/PHYTO-12-14-0367-FICrossRefPubMedGoogle Scholar
  116. Mano Y, Omori F (2007) Breeding for flooding tolerant maize using “teosinte” as a germplasm resource. Plant Root 1:17–21. https://doi.org/10.3117/plantroot.1.17CrossRefGoogle Scholar
  117. Mano Y, Omori F (2013) Relationship between constitutive root aerenchyma formation and flooding tolerance in Zea nicaraguensis. Plant Soil 370:447. https://doi.org/10.1007/s11104-013-1641-0CrossRefGoogle Scholar
  118. Mano YY, Omori F (2015) Flooding tolerance in maize (Zea mays subsp. mays) F1 hybrids containing a QTL introgressed from teosinte (Zea nicaraguensis). Euphytica 205:255–267. https://doi.org/10.1007/s10681-015-1449-5CrossRefGoogle Scholar
  119. Mano YY, Muraki M, Fujimori M, Takamizo T, Kindiger B (2005) Identification of QTL controlling adventitious root formation during flooding conditions in teosinte (Zea mays ssp. huehuetenangensis) seedlings. Euphytica 142:33–42. https://doi.org/10.1007/s10681-005-0449-2CrossRefGoogle Scholar
  120. Matson RG (1991) The origins of southwestern agriculture. University of Arizona Press, TucsonGoogle Scholar
  121. Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez GJ, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci U S A 99:6080–6084PubMedPubMedCentralCrossRefGoogle Scholar
  122. Maxted N, Kell SP (2009) Establishment of a global network for the in situ conservation of crop wild relatives: status and needs. Food and Agriculture Organization of the United Nations Commission on Genetic Resources for Food and Agriculture, RomeGoogle Scholar
  123. McCann J (2005) Maize and grace. Harvard University Press, MassachusettsCrossRefGoogle Scholar
  124. McClintock B (1956) Controlling elements and the gene. Cold Spring Harb Symp Quant Biol 21:197–216PubMedCrossRefGoogle Scholar
  125. McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801PubMedCrossRefGoogle Scholar
  126. Mei W, Boatwright JL, Feng G, Schnable JC, Barbazuk WB (2017a) Evolutionarily conserved alternative splicing across monocots. Genetics. https://doi.org/10.1534/genetics.117.300189
  127. Mei W, Liu S, Schnable JC, Yeh CT, Springer NM, Schnable PS, Barbazuk WB (2017b) A comprehensive analysis of alternative splicing in paleopolyploid maize. Front Plant Sci 8:694PubMedPubMedCentralCrossRefGoogle Scholar
  128. Meilleur BA, Hodgkin T (2004) In situ conservation of crop wild relatives: status and trends. Biodivers Conserv 13:663–684CrossRefGoogle Scholar
  129. Melhus LE (1948) Exploring the maize germplasm of the tropics. In: Proceedings of the 3rd annual hybrid corn industry research conference, Chicago. 1–2 Dec 1948. American Seed Trade Association, Washington, DC, pp 7–19Google Scholar
  130. Menkir A, Rocheford T, Maziya-Dixon B, Tanumihardjo S (2015) Exploiting natural variation in exotic germplasm for increasing provitamin: a carotenoids in tropical maize. Euphytica 205:203–217. https://doi.org/10.1007/s10681-015-1426-zCrossRefGoogle Scholar
  131. Meseka S, Fakorede M, Ajala S, Badu-Apraku B, Menkir A (2013) Introgression of alleles from maize landraces to improve drought tolerance in an adapted germplasm. J Crop Improv 27:96–112. https://doi.org/10.1080/15427528.2012.729259CrossRefGoogle Scholar
  132. Michael TP, Van Buren R (2015) Progress, challenges and the future of crop genomes. Curr Opin Plant Biol 24:71–81. https://doi.org/10.1016/j.pbi.2015.02.002CrossRefPubMedGoogle Scholar
  133. Mir C, Zerjal T, Combes V, Dumas F, Madur D, Bedoya C, Dreisigacker S, Franco J, Grudloyma P, Hao PX, Hearne S, Jampatong S, Laloë D, Muthamia Z, Nguyen T, Prasanna BM, Taba S, Xie CX, Yunus M, Zhang S, Warburton ML, Charcosset A (2013) Out of America: tracing the genetic footprints of the genetic diffusion of maize. Theor Appl Genet 126:2671–2682. https://doi.org/10.1007/s00122-013-2164-zCrossRefPubMedGoogle Scholar
  134. Molinero-Ruiz ML, Melero-Vara JM, Mateos A (2010) Cephalosporium maydis, the cause of late wilt in maize, a pathogen new to Portugal and Spain. Plant Dis 94(3):379PubMedCrossRefGoogle Scholar
  135. Muzhingi T, Palacios-Rojas N, Miranda A, Cabrera ML, Yeum KJ, Tang G (2017) Genetic variation of carotenoids, vitamin E and phenolic compounds in Provitamin A biofortified maize. J Sci Food Agric 97:793–801. https://doi.org/10.1002/jsfa.7798CrossRefPubMedGoogle Scholar
  136. Nault LR, Gordon DT (1982) Response of annual and perennial teosintes (Zea) to six maize viruses. Plant Dis 66:61–62. https://doi.org/10.1094/PD-66-61CrossRefGoogle Scholar
  137. Niblett CL, Claflin LE (1978) Corn lethal necrosis a new virus disease of corn in Kansas. Plant Dis Rep 62:15–19Google Scholar
  138. Paliwal RL (2000) Origin, evolution, and spread of maize. In: Paliwal RL, Granados G, Lafitte HR, Vlollc AD (eds) Tropical maize: production and improvement. FAO, Rome, pp 5–11Google Scholar
  139. Palmer AC, Healy K, Barffour MA, Siamusantu W, Chileshe J, Schulze KJ, West KP, Labrique AB (2016) Provitamin A carotenoid-biofortified maize consumption increases pupillary responsiveness among Zambian children in a randomized controlled trial. J Nutr. https://doi.org/10.3945/jn.116.239202
  140. Payak MM, Lal S, Lilaramani M, Renfro BL (1970) Cephalosporium maydis – a new threat to maize in India. Indian Phytopathol 23(3):562–569Google Scholar
  141. Pésci S, Németh L (1998) Appearance of Cephalosporium maydis Samra, Sabet, and Hingorani in Hungary. Facul Lanbouw En Toegep Biolog Wetenschappen 63:873–877Google Scholar
  142. Piperno DR, Flannery KV (2001) The earliest archeological maize (Zea mays L.) from highland Mexico: new accelerator mass spectrometry dates and their implications. Proc Natl Acad Sci U S A 98:2101–2103PubMedPubMedCentralCrossRefGoogle Scholar
  143. Piperno DR, Ranere AJ, Holst I, Iriarte J, Dickau R (2009) Starch grain and phytolith evidence for early ninth millennium B.P. Maize from the central Balsas river valley, Mexico. Proc Natl Acad Sci U S A 106:5019–5024PubMedPubMedCentralCrossRefGoogle Scholar
  144. Portères R (1955) L’introduction du maïs en Afrique. J Agric Trop Bot Appl 2:221–231Google Scholar
  145. Prasanna BM (2012) Diversity in global maize germplasm: characterization and utilization. J Biosci 37:843–855PubMedCrossRefGoogle Scholar
  146. Prischmann DA, Dashiell KE, Schneider DJ, Eubanks MW (2009) Evaluating Tripsacum-introgressed maize germplasm after infestation with western corn rootworms (Coleoptera: Chrysomelidae). J Appl Entomol 133:10–20. https://doi.org/10.1111/j.1439-0418.2008.01311.xCrossRefGoogle Scholar
  147. Ramos-Madrigal J, Smith BD, Moreno-Mayar JV, Gopalakrishnan S, Ross-Ibarra J, Gilbert MTP, Wales N (2016) Genome sequence of a 5,310-year-old maize cob provides insights into the early stages of maize domestication. Curr Biol 26:3195–3201PubMedCrossRefGoogle Scholar
  148. Randolph LF (1970) Variation among Tripsacum populations of Mexico and Guatemala. Brittonia 22:305–337CrossRefGoogle Scholar
  149. Ranere AJ, Piperno DR, Holst I, Dickau R, Iriarte J (2009) The cultural and chronological context of early Holocene maize and squash domestication in the central Balsas river valley, Mexico. Proc Natl Acad Sci U S A 106:5014–5018PubMedPubMedCentralCrossRefGoogle Scholar
  150. Ray DK, Ramankutty N, Mueller ND, West PC, Foley JA (2012) Recent patterns of crop yield growth and stagnation. Nat Commun 3:1293. https://doi.org/10.1038/ncomms2296CrossRefPubMedGoogle Scholar
  151. Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double crop production by 2050. PLoS One 8:1–8, e66428Google Scholar
  152. Ray DK, Gerber JS, MacDonald GK, West PC (2014) Climate variation explains a third of global crop yield variability. Nat Commun. https://doi.org/10.1038/ncomms6989
  153. Rebourg C, Chastanet M, Gousenard B, Welcker C, Dubreuil P, Charcosset A (2003) Maize introduction into Europe: the history reviewed in the light of molecular data. Theor Appl Genet 106:895–903PubMedCrossRefGoogle Scholar
  154. Redinbaugh MG, Pratt RC (2008) Virus resistance. In: Hake S, Bennetzen JL (eds) Handbook of maize: its biology. Springer, New York, pp 255–270Google Scholar
  155. Reiners RA, Gooding CM (1970) Corn oil. In: Inglett GE (ed) Corn: culture, processing, products. Avi Publishing, Westport, pp 241–261Google Scholar
  156. Rich PJ, Ejeta G (2008) Towards effective resistance to Striga in African maize. Plant Signal Behav 3:618–621PubMedPubMedCentralCrossRefGoogle Scholar
  157. Rodriguez MG, Miguel-Chavez RS, Larque-Saavedra A (1998) Physiological aspects in Tuxpeno maize with improved drought tolerance. Maydica 43:137–141Google Scholar
  158. Ross-Ibarra J, Monrell PL, Gaut S (2007) Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proc Natl Acad Sci U S A 104:8641–8648PubMedPubMedCentralCrossRefGoogle Scholar
  159. Salhuana W, Pollak L (2006) Latin American maize project (LAMP) and germplasm enhancement of maize (GEM) project: generating useful breeding germplasm. Maydica 51:339Google Scholar
  160. Samra AS, Sabet KA, Hingorani MK (1962) A new wilt of maize in Egypt. Plant Dis Rptr 46:481–483Google Scholar
  161. Samra AS, Sabet KA, Hingorani MK (1963) Late wilt disease of maize caused by Cephalosporium maydis. Phytopathology 53(4):402–406Google Scholar
  162. Sánchez-González JJ, Ordaz L (1987) Systematic and ecogeographic studies on crop gene pools: 2. El teocintle en México: distribución y situación actual de las poblaciones. IBPGR, RomeGoogle Scholar
  163. Sánchez-González JJ, Ruiz-Corral JA (1996) Distribución del teocintle en México. In: Serratos JA, Willcox MC, Castillo F (eds) Memoria del Foro: Flujo genético entre maíz criollo, maíz mejorado y teocintle: implicaciones para el maíz transgénico. INIFAP, CIMMYT, CNBA, El Batán, pp 20–38Google Scholar
  164. Sánchez-González JJ, Kato-Yamamake TA, Aguilar-Sanmiguel M, Hernández Casillas JM, López-Rodriguez A, Ruiz-Corral JA (1998) Distribución y caracterización del teocintle. Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias. Centro de Investigación Regional del Pacífico Centro. Libro técnico No. 2. CIPAC-INIFAP-SAGAR, GuadalajaraGoogle Scholar
  165. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia JM, Deragon JM, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326(5956):1112–1115. https://doi.org/10.1126/science.1178534CrossRefPubMedGoogle Scholar
  166. Schnable J, Zang Y, Ngu DWC (2016) Pan-grass syntenic gene set (sorghum referenced). Figshare. https://doi.org/10.6084/m9.figshare.3113488.v1
  167. Shiferaw B, Prasanna BM, Hellin J, Banziger M (2011) Crops that feed the world. 6. Past successes and future challenges to the role played by maize in global food security. Food Sec 3:307–327CrossRefGoogle Scholar
  168. Smith JSC, Cooper M, Gogerty J, Loeffler C, Borcherding D, Wright K (2014) Yield gains contributed by plant breeding in US maize 1930–2011. In: Smith JSC, Specht J, Diers B, Carver B (eds) Yield gains in major US field crops. Crop Science Society of America, Madison, pp 125–171Google Scholar
  169. Smith JS, Gardner CAC, Costich DE (2017) Ensuring the genetic diversity of maize and its wild relatives. In: Watson D (ed) Achieving sustainable cultivation of Maize, Volume 1: from improved varieties to local applications. Burleigh Dodds Science Publishing Ltd, Sawston, pp 3–50. https://doi.org/10.19103/AS.2016.0001.02CrossRefGoogle Scholar
  170. Sood S, Flint-Garcia S, Willcox MC, Holland JB (2014) Mining natural variation for maize improvement: selection on phenotypes and genes. In: Tuberosa R, Graner A, Frison E (eds) Genomics of plant genetic resources. Springer, Dordrecht, pp 615–649. https://doi.org/10.1007/978-94-007-7572-5_25CrossRefGoogle Scholar
  171. Springer TL, Dewald CL (2004) Eastern gamagrass and other Tripsacum species. In: Moser LE, Burson BL, Sollenberger LE (eds) Warm-season (C4) grasses agronomy monograph 45. American Society of Agronomy, Madison, pp 955–973Google Scholar
  172. Studer A, Zhao Q, Ross-Ibarra J, Doebley J (2011) Identification of a functional transposon insertion in the maize domestication gene tb1. Nat Genet 43:1160–1163PubMedPubMedCentralCrossRefGoogle Scholar
  173. Swarup S, Timmermans MC, Chaudhuri S, Messing J (1995) Determinants of the high-methionine trait in wild and exotic germplasm may have escaped selection during early cultivation of maize. Plant J 8:359–368. https://doi.org/10.1046/j.1365-313X.1995.08030359.xCrossRefPubMedGoogle Scholar
  174. Swigonová Z, Lai J, Ma J, Ramakrishna W, Llaca V, Bennetzen JL, Messing J (2004) Close split of sorghum and maize genome progenitors. Genome Res 14:1916–1923PubMedPubMedCentralCrossRefGoogle Scholar
  175. Taba S (1995) Teosinte: geographic variations and conservation. In: Taba S (ed) Maize genetic resources. Maize program special report. CIMMYT, Mexico, D.F.Google Scholar
  176. Talbert LE, Doebley JF, Larson S, Chandler VL (1990) Tripsacum andersonii is a natural hybrid involving Zea and Tripsacum: molecular evidence. Am J Bot 77(6):722–726CrossRefGoogle Scholar
  177. Tang Q, Rong T, Song Y, Yang J, Pan G, Li W, Huang Y, Cao M (2005) Introgression of perennial teosinte genome into maize and identification of genomic in situ hybridization and microsatellite markers. Crop Sci 45:717–721. https://doi.org/10.2135/cropsci2005.0717CrossRefGoogle Scholar
  178. USDA-NASS (2004) State level data for field crops. Grains. Corn area, yield, production, price per unit, and value of production [Online]. Available by NASS. https://www.nass.usda.gov/Statistics_by_Subject/
  179. Uyemoto JK, Bockelman DL, Claflin LE (1980) Severe outbreak of corn lethal necrosis disease in Kansas. Plant Dis 64:99–100. https://doi.org/10.1094/PD-64-99CrossRefGoogle Scholar
  180. Vallebueno-Estrada M, Rodríguez-Arévalo I, Rougon-Cardoso A, Martínez-González J, García Cook A, Montiel R, Vielle-Calzada JP (2016) The earliest maize from San Marcos Tehuacán is a partial domesticate with genomic evidence of inbreeding. Proc Natl Acad Sci U S A 113:14151–14156PubMedPubMedCentralCrossRefGoogle Scholar
  181. van Heerwaarden JV, Doebley J, Briggs WH, Glaubitz JC, Goodman MM, Sanchez Gonzalez JJ, Ross-Ibarra J (2011) Genetic signals of origin, spread and introgression in a large sample of maize landraces. Proc Natl Acad Sci U S A 108:1088–1092PubMedCrossRefGoogle Scholar
  182. Vierra BJ (2005) The late archaic across the borderlands: from foraging to farming. University of Texas Press, AustinGoogle Scholar
  183. Vincent H, Wiersema J, Kell S, Fielder H, Dobbie S, Castañeda-Álvarez NP, Maxted N (2013) A prioritized crop wild relative inventory to help underpin global food security. Biol Conserv 167:265–275CrossRefGoogle Scholar
  184. Wang H, Nussbaum-Wagle T, Li B, Zhao Q, Vigoroux Y, Faller M, Bomblies K, Lukens L, Doebley JF (2005) The origin of the naked grains of maize. Nature 436:714–719PubMedPubMedCentralCrossRefGoogle Scholar
  185. Wang L, Xu C, Qu M, Zhang J (2008a) Kernel amino acid composition and protein content of introgression lines from Zea mays ssp. Mexicana into cultivated maize. J Cereal Sci 48:387–393. https://doi.org/10.1016/j.jcs.2007.09.014CrossRefGoogle Scholar
  186. Wang LZ, Yang AF, He CM, Qu ML, Zhang JR (2008b) Creation of new maize germplasm using alien introgression from Zea mays ssp. mexicana. Euphytica 164:789–801. https://doi.org/10.1007/s10681-008-9730-5CrossRefGoogle Scholar
  187. Wang B, Tseng E, Regulski M, Clark TA, Hon T, Jiao Y, Lu Z, Olson A, Stein JC, Ware D (2016) Unveiling the complexity of the maize transcriptome by single-molecule long-read sequencing. Nat Commun 7:11708PubMedPubMedCentralCrossRefGoogle Scholar
  188. Wangai A, Sikinyi E, Ochieng J, Miyogo S, Karanja T, Odour H, Kimani E, Irungu J, Kinyua Z, Ngaruiya P, Ligeyo D, Kipkemboi S (2012a) Joint assessment report: report on status of maize lethal necrosis disease and general maize performance. Ministry of Agriculture, Kenya. Online publication. http://www.fao.org/fileadmin/user_upload/drought/docs/Maize%20Lethal%20Necrotic%20Disease%20in%20Kenya_Joint%20Assessment%20Report%20(July%202012).pdfGoogle Scholar
  189. Wangai AW, Redinbaugh MG, Kinyua ZM, Mahuku G, Sheets K, Jeffers D (2012b) First report of Maize chlorotic mottle virus and maize lethal necrosis in Kenya. Plant Dis 96:1582. https://doi.org/10.1094/PDIS-06-12-0576-PDN. [Abstract] [ISI]CrossRefPubMedGoogle Scholar
  190. Warburton ML, Wilkes G, Taba S, Charcosset A, Mir C, Madur D, Dreisigacker S, Bedoya C, Prasanna B, Xie C, Hearne S, Franco J (2011) Gene flow between different teosinte species and into the domesticated maize gene pool. Genet Resour Crop Evol 58:1243–1261CrossRefGoogle Scholar
  191. Warburton ML, Williams WP, Windham G, Murray S, Xu W, Hawkins L, Franco J (2013) Phenotypic and genetic characterization of a maize association mapping panel developed for the identification of new sources of resistance to Aspergillus flavus and aflatoxin accumulation. Crop Sci 53:2374–2383. https://doi.org/10.2135/cropsci2012.10.0616CrossRefGoogle Scholar
  192. Watanabe K, Takahashi H, Sato S, Nishiuchi S, Omori F, Malik AI, Colmer TD, Mano Y, Nakazono M (2017) A major locus involved in the formation of the radial oxygen loss barrier in adventitious roots of teosinte Zea nicaraguensis is located on the short-arm of chromosome 3. Plant, Cell Environ 40(2):304–316CrossRefGoogle Scholar
  193. Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55(396):353–364PubMedCrossRefGoogle Scholar
  194. Wellhausen EJ, Roberts LM, Hernandez XE (1952) Races of maize in Mexico. Bussey Institution of Harvard University, CambridgeGoogle Scholar
  195. White SE, Doebley JF (1999) The molecular evolution of terminal ear1, a regulatory gene in the genus Zea. Genetics 153(3):1455–1462PubMedPubMedCentralGoogle Scholar
  196. Wilkes HG (1967) Teosinte: the closest relative of maize. Bussey Institution of Harvard University, CambridgeGoogle Scholar
  197. Wills WH (1988) Early prehistoric agriculture in the American Southwest. School of American Research Press, Santa FeGoogle Scholar
  198. Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2:983–989PubMedCrossRefGoogle Scholar
  199. Zhu Q, Cai Z, Tang Q, Jin W (2016) Repetitive sequence analysis and karyotyping reveal different genome evolution and speciation of diploid and tetraploid Tripsacum dactyloides. Crop J 4:247–255CrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  • Carlos I. Cruz-Cárdenas
    • 1
    Email author
  • Moisés Cortés-Cruz
    • 2
  • Candice A. Gardner
    • 3
    • 4
  • Denise E. Costich
    • 5
  1. 1.Laboratorio de Recursos Genéticos Agrícola-Forestal, Sección Semillas Ortodoxas, Centro Nacional de Recursos GenéticosTepatitlán de MorelosMexico
  2. 2.Laboratorio de ADN y Genómicas, Centro Nacional de Recursos GenéticosTepatitlán de MorelosMexico
  3. 3.USDA-ARS, North Central Regional Plant Introduction StationAmesUSA
  4. 4.Iowa State UniversityAmesUSA
  5. 5.Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT)El Batán, TexcocoMexico

Personalised recommendations