Principal Component Regression

  • Alejandro C. Olivieri


A modern multivariate model incorporating all required characteristics is discussed, based on the combination of principal component analysis and inverse least-squares regression.


Principal component regression Data compression and decompression Calibration and validation Regression coefficients Optimum number of latent variables 


  1. ISO 20483: Cereals and Pulses—Determination of the Nitrogen Content and Calculation of the Crude Protein Content—Kjeldahl Method. International Organization for Standardization (ISO), Geneva (2000)Google Scholar
  2. ISO 6492: Animal Feeding Stuffs—Determination of Fat Content. International Organization for Standardization (ISO), Geneva (1999)Google Scholar
  3. ISO 6493: Animal Feeding Stuffs—Determination of Starch Content—Polarimetric Method. International Organization for Standardization (ISO), Geneva (2000)Google Scholar
  4. ISO 6540: Maize—Determination of Moisture Content (on Milled Grains on Whole Grains). International Organization for Standardization (ISO), Geneva (1980)Google Scholar
  5. Lin, Y.W., Deng, B.C., Xua, Q.S., Yun, Y.H., Liang, Y.Z.: The equivalence of partial least squares and principal component regression in the sufficient dimension reduction framework. Chemom. Intell. Lab. Syst. 150, 58–64 (2016)Google Scholar
  6. Lipp, M.: Comparison of PLS, PCR and MLR for the quantitative determination of foreign oils and fats in butter fats of several European countries by their triglyceride composition. Z. Lebensm. Unter. For. 202, 193–198 (1996)CrossRefGoogle Scholar
  7. Norris, K.H., Hart, J.R.: Direct spectrophotometric determination of moisture content of grain and seeds. In: Principles and methods of measuring moisture in liquids and solids. Proceedings of the 1963 International Symposium on Humidity and Moisture, vol. 4, pp. 19–25. Reinhold, New York (1965)Google Scholar
  8. Thomas, E.V., Haaland, D.M.: Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information. Anal. Chem. 60, 1193–1202 (1988)CrossRefGoogle Scholar
  9. Wentzell, P.D., Vega Montoto, L.: Comparison of principal components regression and partial least squares regression through generic simulations of complex mixtures. Chemom. Intell. Lab. Syst. 65, 257–279 (2003)Google Scholar
  10. Wold, S., Sjöström, M., Eriksson, L.: PLS-regression: a basic tool of chemometrics. Chemom. Intell. Lab. Syst. 58, 109–130 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Alejandro C. Olivieri
    • 1
  1. 1.Universidad Nacional de Rosario, Instituto de Química Rosario - CONICETRosarioArgentina

Personalised recommendations