Advertisement

Analytical Figures of Merit

  • Alejandro C. Olivieri
Chapter

Abstract

Figures of merit are regularly used to compare the performance of different analytical methodologies. A modern view of their definitions and interpretations is provided in the framework of first-order multivariate calibration.

Keywords

Analytical figures of merit Sensitivity Selectivity Prediction uncertainty Detection and quantitation limits 

References

  1. Allegrini, F.A., Olivieri, A.C.: IUPAC-consistent approach to the limit of detection in partial least-squares calibration. Anal. Chem. 86, 7858–7866 (2014)CrossRefPubMedGoogle Scholar
  2. Cuadros Rodríguez, L., García Campaña, A.M., Jiménez Linares, C., Román Ceba, M.: Estimation of performance characteristics of an analytical method using the data set of the calibration experiment. Anal. Lett. 26, 1243–1258 (1993)CrossRefGoogle Scholar
  3. Currie, L.A.: Nomenclature in evaluation of analytical methods including detection and quantification capabilities. Pure Appl. Chem. 67, 1699–1723 (1995)CrossRefGoogle Scholar
  4. Currie, L.A.: Detection and quantification limits: origins and historical overview. Anal. Chim. Acta. 391, 127–134 (1999)CrossRefGoogle Scholar
  5. Danzer, K., Currie, L.A.: Guidelines for calibration in analytical chemistry. Part I. Fundamentals and single component calibration. Pure Appl. Chem. 70, 993–1014 (1998)CrossRefGoogle Scholar
  6. De Bièvre, P.: Measurement results without statements of reliability should not be taken seriously. Accred. Qual. Assur. 2, 269 (1997)CrossRefGoogle Scholar
  7. Faber, N.M.: The limit of detection is not the analyte level for deciding between “detected” and “not detected”. Accred. Qual. Assur. 13, 277–278 (2008)CrossRefGoogle Scholar
  8. Faber, K., Kowalski, B.R.: Propagation of measurement errors for the validation of predictions obtained by principal component regression and partial least squares. J. Chemometr. 11, 181–238 (1997)CrossRefGoogle Scholar
  9. Fragoso, W., Allegrini, F., Olivieri, A.C.: A new and consistent parameter for measuring the quality of multivariate analytical methods: generalized analytical sensitivity. Anal. Chim. Acta. 933, 43–49 (2016)CrossRefPubMedGoogle Scholar
  10. Goicoechea, H.C., Olivieri, A.C.: Enhanced synchronous spectrofluorometric determination of tetracycline in blood serum by chemometric analysis. Comparison of partial least-squares and hybrid linear analysis calibrations. Anal. Chem. 19, 4361–4368 (1999)CrossRefGoogle Scholar
  11. Olivieri, A.C.: Analytical figures of merit: from univariate to multiway calibration. Chem. Rev. 114, 5358–5378 (2014)CrossRefPubMedGoogle Scholar
  12. Olivieri, A.C., Allegrini, F.: Recent advances in analytical figures of merit: heteroscedasticity strikes back. Anal. Methods. 9, 739–743 (2017)CrossRefGoogle Scholar
  13. Olivieri, A.C., Escandar, G.M.: Practical three-way calibration. Elsevier, Waltham (2014)Google Scholar
  14. Petrakis, E.A., Polissiou, M.G.: Assessing saffron (Crocus sativus L.) adulteration with plant-derived adulterants by diffuse reflectance infrared Fourier transform spectroscopy coupled with chemometrics. Talanta. 162, 558–566 (2017)CrossRefPubMedGoogle Scholar
  15. Skogerboe, R.K., Grant, C.L.: Comments on the definitions of the terms sensitivity and detection limits. Spectrosc. Lett. 3, 215–220 (1970)CrossRefGoogle Scholar
  16. Vessman, J., Stefan, R.I., van Staden, J.F., Danzer, K., Lindner, W., Burns, D.T., Fajgelj, A., Müller, H.: Selectivity in analytical chemistry. Pure Appl. Chem. 73, 1381–1386 (2001)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Alejandro C. Olivieri
    • 1
  1. 1.Universidad Nacional de Rosario, Instituto de Química Rosario - CONICETRosarioArgentina

Personalised recommendations