Advertisement

Ecoservice Role of Earthworm (Lumbricidae) Casts in Grow of Soil Buffering Capacity of Remediated Lands Within Steppe Zone, Ukraine

  • Sergiy Nazimov
  • Iryna Loza
  • Yurii Kul’bachko
  • Oleg Didur
  • Oleksandr Pakhomov
  • Angelina Kryuchkova
  • Maria Shulman
  • Tatiana Zamesova
Chapter

Abstract

This work is devoted to investigate the ecoservice role of soil saprophages in the formation of sustainable man-made ecosystems under forest plantations. The investigation allowed effect of earthworm casting activities on soil buffering against solution with different pH levels and copper compounds to be detected within the territory remediated after coal mining (Western Donbass, Ukraine). Assays of pH-buffering capacity and copper immobilization/mobilization performed on earthworm casts and artificial remediated soil. Ecosystem effectiveness of soil saprophages (earthworms, Lumbricidae) was shown to be effected on increase of acid-alkaline (pH-buffering) buffering capacity in remediated soil. The study results prove that acid-alkaline buffering capacity of earthworm casts was significantly higher than that of remediated soil and subsoil by 17.9% and 20.8%, respectively. Effectiveness of copper immobilization reflecting degree of soil stability to copper contamination was increased from 23.1% to 39.2%, respectively. Thus, earthworm ecoservice activity had positive changes on environmental conditions of remediated soil and naturalization of artificial edaphotopes within remediated lands in Steppe zone. Environmental quality of remediated soil enriched in earthworm casts was confirmed to be improved.

Keywords

Soil invertebrate casts Ecoservice role of earthworm activity Remediated lands Soil buffering capacity Copper contamination Sustainable development 

References

  1. Aira, M., Monroy, F., & Domínguez, J. (2003). Effects of two species of Earthworms (Allolobophora spp.) on soil systems: A microfaunal and biochemical analysis. Pedobiologia, 47(5–6), 877–881.Google Scholar
  2. Aira, M., Lazcano, C., Gómez-Brandón, M., et al. (2010). Ageing effects of casts of Aporrectodea caliginosa on soil microbial community structure and activity. Applied Soil Ecology, 46(1), 143–146.CrossRefGoogle Scholar
  3. Arranz-González, J. C. (2011). Suelos mineros asociados a la minería de carbón a cielo abierto en España: una revision. Boletín Geológico y Minero, 122(2), 171–186.Google Scholar
  4. Atkinson Kendall, E. (1989). An introduction to numerical analysis. New York: Wiley.Google Scholar
  5. Behnassi, M., Shahid, S. A., & Gopichandran, R. (2014). Agricultural and food system – Global change nexus: Dynamics and policy implications. In M. Behnassi et al. (Eds.), Science, policy and politics of modern agricultural system (pp. 3–13). Dodrecht: Springer Science+Business Media.CrossRefGoogle Scholar
  6. Böhm, C., Quinkenstein, A., Freese, D., et al. (2009). Kurzumtriebsplantage auf Niederlausitzer Rekultivierungsflächen: Wachstumsverlauf von vierjährigen Robinien. AFZDerWald, 10(64), 532–533.Google Scholar
  7. Böhm, C., Quinkenstein, A., Freese, D., et al. (2011). Assessing the short rotation woody biomass production on marginal post-mining areas. Journal of Forest Science, 57(7), 303–311.CrossRefGoogle Scholar
  8. Bottinelli, N., Henry-des-Tureaux, T., Hallaire, V., et al. (2010). Earthworms accelerate soil porosity turnover under watering conditions. Geoderma, 156(1–2), 43–47.CrossRefGoogle Scholar
  9. Brygadyrenko, V. V. (2016). Influence of litter thickness on the structure of litter macrofauna of deciduous forests of Ukraine’s steppe zoneю. Visnyk of Dnipropetrovsk University. Biology, Ecology, 24(1), 240–248.  https://doi.org/10.15421/011630.CrossRefGoogle Scholar
  10. Butt, K. R., & Lowe, C. N. (2011). Controlled cultivation of endogeic and anecic Earthworms. In A. Karaca (Ed.), Biology of Earthworms (Soil Biology 24) (pp. 107–121). Berlin Heidelberg: Springer.CrossRefGoogle Scholar
  11. Chapra, C. S. (2012). Applied numerical methods with MATLAB® for engineers and scientists. New York: McGraw-Hill.Google Scholar
  12. Choosai, C., Jouquet, P., Hanboonsong, Y., et al. (2010). Effects of earthworms on soil properties and rice production in the rainfed paddy fields of Northeast Thailand. Applied Soil Ecology, 3(45), 298–303.CrossRefGoogle Scholar
  13. Cooke, J. A., & Johnson, M. S. (2002). Ecological restoration of land with particular reference to the mining of metals and industrial minerals: A review of theory and practice. Environmental Reviews, 10(1), 41–71.CrossRefGoogle Scholar
  14. Didur, O., Loza, I., Kul’bachko, Y. (2011). Environmental impact of excretorial activity of earthworms (Lumbricidae) on the buffering capacity of remediated soils. In: Proceeding of NATO ARW “Environmental and Food Security and Safety in Southeast Europe and Ukraine”, Dnipropetrovsk, 16–19 May 2011.Google Scholar
  15. Didur, O., Loza, I., Kul’bachko, Y., et al. (2013). Environmental impact of Earthworm (Lumbricidae) excretory activity on pH-buffering capacity of remediated soil. Visnyk of Dnipropetrovsk University. Biology, Ecology, 62, 140–145.Google Scholar
  16. Eisenhauer, N. (2010). The action of an animal ecosystem engineer: Identification of the main mechanisms of earthworm impacts on soil microarthropods. Pedobiologia, 53(6), 343–352.  https://doi.org/10.1016/j.pedobi.2010.04.003.CrossRefGoogle Scholar
  17. Gamkalo, Z. G. (2005). Role of organic fertilizer in optimization of the acid-base properties of gray forest soils of Western forest-steppe zone of Ukraine. Agronomical Chemistry and Soil Science, 66, 53–58.Google Scholar
  18. Ilyin, V. B. (1995). Estimation of soils buffering capacity to heavy metal contamination. Agrochemistry, 10, 109–113.Google Scholar
  19. Jachimko, B. (2012). The influence of lignite mining on water quality. In K. Voudouris & D. Voutsa (Eds.), Water quality monitoring and assessment (pp. 373–390). Croatia: Publisher InTech.  https://doi.org/10.5772/32897.CrossRefGoogle Scholar
  20. Jones, C. G., Lawton, J. H., & Shachak, M. (1994). Organisms as ecosystem engineers. Oikos, 69, 373–386.CrossRefGoogle Scholar
  21. Kul’bachko, Y., Loza, I., Pakhomov, O., et al. (2014). Tropho-methabolic activity of earthworms (Lumbricidae) as zoogenic factor maintaining the stability of remediated soil against copper contamination. Visnyk of Dnipropetrovsk University. Biology, Ecology, 22(2), 104–109.Google Scholar
  22. Kul’bachko, Y., Loza, I., Pakhomov, O., et al. (2011). The zooecological remediation of technogen faulted soil in the industrial region of the Ukraine Steppe Zone. In M. Behnassi, A. S. Shahid, & J. D’Silva (Eds.), Sustainable agricultural development: Recent approaches in resources management and environmentally-balanced production enhancement (pp. 115–123). Dordrecht: Springer.CrossRefGoogle Scholar
  23. Lavelle, P., Decaëns, T., Aubert, M., et al. (2006). Soil invertebrates and ecosystem services. European Journal of Soil Biology, 42(1), 3–15.CrossRefGoogle Scholar
  24. Milcu, A., Partsch, S., Langel, R., et al. (2006). The response of decomposers (earthworms, springtails and microorganisms) to variations in species and functional group diversity of plants. Oikos, 112(3), 513–524.CrossRefGoogle Scholar
  25. Mtui, G. Y. S., Mligo, C., Mutakyahwa, M. K. D., et al. (2006). Vegetation structure and heavy metal uptake by plants in the mining-impacted and non mining-impacted sites of Southern Lake Victoria wetlands. Tanzania Journal of Science, 32(2), 39–49.Google Scholar
  26. Novitskiy, M. L. (2011). Granulometric composition of fine soil of sulfide solids and man-made substrates of mine piles. Bulletin of the Nikitsky Botanical Garden, 103, 85–87.Google Scholar
  27. Orlov, D. S. (1994). Soil ecological monitoring. Moscow: MSU.Google Scholar
  28. Orlov, D. S., Sadovnikova, L. K., & Sukhanova, L. I. (2005). Soil chemistry. Moscow: Higher Sch.Google Scholar
  29. Pakhomov, A. E., Kulbachko, Y. L., & Didur, O. A. (2009). Study of ecological interrelations of bigeminate-legged millipeds (Diplopoda) and artificial mixed soils as their habitat in experimental conditions. In I. Apostol, D. L. Barry, W. G. Coldewey, & D. W. G. Reimer (Eds.), Optimization of disaster forecasting and prevention measures in the context of human and social dynamics (pp. 163–171). Amsterdam: IOS Press.Google Scholar
  30. Pampura, T. V., Pinsky, D. L., Ostroumov, V. E., et al. (1993). Experimental study of buffering capacity of soil at copper and zinc contamination. Eurasian Soil Science+, 25(10), 104–110.Google Scholar
  31. Pecharová, E., & Hrabankova, M. (2006). A concept for reconstructing the post-mining region under the Lisbon strategy. Ekológia, 25(3), 194–205.Google Scholar
  32. Pecharova, E., Hezina, T., Prochazka, J., et al. (2001). Restoration of spoil heaps in Northwestern Bohemia using wetlands. In J. Vymazal (Ed.), Transformations of nutrients in natural and constructed wetlands (pp. 129–142). Leiden: Backhuys Publishers.Google Scholar
  33. Pecharová, E., Martis, M., Kašparová, I., et al. (2011). Environmental approach to methods of regeneration of disturbed landscapes. Journal of Landscape Studies, 4(2), 71–80.Google Scholar
  34. Pokarzhevsky, A. D. (1985). Geochemical ecology of terrestrial animals. Moscow: Nauka.Google Scholar
  35. Ripl, W., Pokorny, J., Eiseltova, M., et al. (1994). Holistic approach to structure the function of wetlands and their degradation. In M. Eiseltova (Ed.), Restoration of lake ecosystems – A holistic approach (pp. 16–35). Oxford: IWRB Publ.Google Scholar
  36. Safonov, A. I. (2005). Phytogeochemistry of copper in man-made environment. Problems of Ecology and Nature Protection of Technogenic Region, 5, 68–74.Google Scholar
  37. Singh, A. N., & Singh, J. S. (2006). Experiments on ecological restoration of coal mine spoil using native trees in a dry tropical environment, India: A synthesis. New Forests, 31(1), 25–39.  https://doi.org/10.1007/s11056-004-6795-4.CrossRefGoogle Scholar
  38. Sklenicka, P., Prikryl, I., & Svoboda, I. (2004). Non-productive principles of landscape rehabilitation after long-term opencast mining in north-west Bohemia. Journal-South African Institute of Mining and Metallurgy, 104(2), 83–88.Google Scholar
  39. Skousen, J., Sencindiver, J., Owens, K., et al. (1998). Physical properties of minesoils in West Virginia and their influence on wastewater treatment. Journal of Environmental Quality, 27(3), 633–639.CrossRefGoogle Scholar
  40. Striganova, B. R. (1980). Feeding of soil saprophages. Moscow: Nauka.Google Scholar
  41. Strzyszcz, Z. (1996). Recultivation and landscaping in areas after brown-coal mining in Middle-East European countries. Water Air and Soil Pollution, 91, 145–157.CrossRefGoogle Scholar
  42. Thassitou, P. K., & Arvanitoyannis, I. S. (2001). Bioremediation: a novel approach to food waste management. Trends in Food Science & Technology, 12(5–6), 185–196.CrossRefGoogle Scholar
  43. Truskavetskiy, R. S. (2003). Buffering capacity of soils and their main functions. Kharkiv: New Word.Google Scholar
  44. van Emden, H. (2008). Statistics for terrified biologists. Oxford: Blackwell Publishing.Google Scholar
  45. Wang, Y., Dawson, R., Han, D., et al. (2001). Landscape ecological planning and design of degraded mining land. Land Degradation and Development, 12(5), 449–459.CrossRefGoogle Scholar
  46. Weiss, N. A. (2012). Introductory statistics. Boston: Addison-Wesley.Google Scholar
  47. Zar, J. H. (2010). Biostatistical analysis. Upper Saddle River: Pearson Prentice-Hall.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sergiy Nazimov
    • 1
  • Iryna Loza
    • 1
  • Yurii Kul’bachko
    • 1
  • Oleg Didur
    • 1
  • Oleksandr Pakhomov
    • 1
  • Angelina Kryuchkova
    • 1
  • Maria Shulman
    • 1
  • Tatiana Zamesova
    • 1
  1. 1.Laboratory of Biological Monitoring, Biology Research InstituteDnipropetrovsk National UniversityDnipropetrovskUkraine

Personalised recommendations