Advertisement

Neutrality, Robustness, and Evolvability in Genetic Programming

  • Ting HuEmail author
  • Wolfgang Banzhaf
Chapter
Part of the Genetic and Evolutionary Computation book series (GEVO)

Abstract

Redundant mapping from genotype to phenotype is common in evolutionary algorithms, especially in genetic programming (GP). Such a redundancy leads to neutrality, a situation where mutations to a genotype may not alter its phenotypic outcome. The effects of neutrality can be better understood by quantitatively analyzing its two observed properties, robustness and evolvability. In this chapter, we summarize our previous work on this topic in examining a compact Linear GP algorithm. Due to the choice of this particular system we can characterize its entire genotype, phenotype, and fitness networks, and quantitatively measure robustness and evolvability at the genotypic, phenotypic, and fitness levels. We then investigate the relationship between robustness and evolvability at those different levels. Technically, we use an ensemble of random walkers and hill climbers to study how robustness and evolvability are related to the structure of genotypic, phenotypic, and fitness networks and influence the evolutionary search process.

Keywords

Genetic programming Linear GP Neutral networks Robustness Evolvability Genomic diversity Structural diversity Behavioral diversity 

Notes

Acknowledgements

TH is supported by the Ignite R&D fund of Research and Development Corporation of Newfoundland and Labrador and the Canadian Natural Sciences and Engineering Research Council (NSERC) Discovery grant RGPIN-04699-2016. WB acknowledges the support from the Canadian Natural Sciences and Engineering Research Council (NSERC) Discovery grant RGPIN-283304-2012.

References

  1. 1.
    Banzhaf, W.: Genotype-phenotype mapping and neutral variation - a case study in genetic programming. In: Davidor, Y., Schwefel, H.P., Manner, R. (eds.) Parallel Problem Solving from Nature. Lecture Notes in Computer Science, vol. 866, pp. 322–332. Springer, Berlin (1994)Google Scholar
  2. 2.
    Banzhaf, W., Leier, A.: Evolution on neutral networks in genetic programming. In: Yu, T., Riolo, R., Worzel, B. (eds.) Genetic Programming Theory and Practice III, chap. 14, pp. 207–221. Springer, Berlin (2006)CrossRefGoogle Scholar
  3. 3.
    Banzhaf, W., Beslon, G., Christensen, S., Foster, J.A., Kepes, F., Lefort, V., Miller, J.F., Radman, M., Ramsden, J.J.: From artificial evolution to computational evolution: a research agenda. Nat. Rev. Genet. 7, 729–735 (2006)CrossRefGoogle Scholar
  4. 4.
    Brameier, M.F., Banzhaf, W.: A comparison of linear genetic programming and neural networks in medical data mining. IEEE Trans. Evol. Comput. 5(1), 17–26 (2001)CrossRefGoogle Scholar
  5. 5.
    Brameier, M.F., Banzhaf, W.: Linear Genetic Programming. Springer, Berlin (2007)zbMATHGoogle Scholar
  6. 6.
    Ciliberti, S., Martin, O.C., Wagner, A.: Innovation and robustness in complex regulatory gene networks. Proc. Natl. Acad. Sci. 104(34), 13591–13596 (2007)CrossRefGoogle Scholar
  7. 7.
    Collins, M.: Finding needles in haystacks is harder with neutrality. Genet. Program. Evolvable Mach. 7, 131–144 (2006)CrossRefGoogle Scholar
  8. 8.
    Cowperthwaite, M.C., Economo, E.P., Harcombe, W.R., Miller, E.L., Meyers, L.A.: The ascent of the abundant: how mutational networks constrain evolution. PLoS Computat. Biol. 4(7), e1000110 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Draghi, J.A., Parsons, T.L., Wagner, G.P., Plotkin, J.B.: Mutational robustness can facilitate adaptation. Nature 463, 353–355 (2010)CrossRefGoogle Scholar
  10. 10.
    Ferrada, E., Wagner, A.: Protein robustness promotes evolutionary innovations on large evolutionary time-scales. Proc. R. Soc. B 275, 1595–1602 (2008)CrossRefGoogle Scholar
  11. 11.
    Fontana, W., Schuster, P.: Continuity in evolution: on the nature of transitions. Science 280, 1451–1455 (1998)CrossRefGoogle Scholar
  12. 12.
    Galvan-Lopez, E., Poli, R.: An empirical investigation of how and why neutrality affects evolutionary search. In: Cattolico, M. (ed.) Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1149–1156. Springer, Berlin (2006)Google Scholar
  13. 13.
    Guven, A.: Linear genetic programming for time-series modeling of daily flow rate. J. Earth Syst. Sci. 118(2), 137–146 (2009)CrossRefGoogle Scholar
  14. 14.
    Hu, T., Banzhaf, W.: Neutrality and variability: two sides of evolvability in linear genetic programming. In: Rothlauf, F. (ed.) Proceedings of the Genetic and Evolutionary Computation Conference, pp 963–970 (2009)Google Scholar
  15. 15.
    Hu, T., Banzhaf, W.: Evolvability and speed of evolutionary algorithms in light of recent developments in biology. J. Artif. Evol. Appl. 2010, 568375 (2010)Google Scholar
  16. 16.
    Hu, T., Payne, J.L., Banzhaf, W., Moore, J.H.: Robustness, evolvability, and accessibility in linear genetic programming. In: Silva, S., Foster, J.A., Nicolau, M., Machado, P., Giacobini, M. (eds.) Proceedings of the European Conference on Genetic Programming. Lecture Notes in Computer Science, vol. 6621, pp. 13–24. Springer, Berlin (2011)Google Scholar
  17. 17.
    Hu, T., Payne, J.L., Banzhaf, W., Moore, J.H.: Evolutionary dynamics on multiple scales: A quantitative analysis of the interplay between genotype, phenotype, and fitness in linear genetic programming. Genet. Program. Evolvable Mach. 13, 305–337 (2012)CrossRefGoogle Scholar
  18. 18.
    Hu, T., Moore, J.H., Banzhaf, W.: The effects of recombination on phenotypic exploration and robustness in evolution. Artif. Life 20(4), 457–470 (2014)CrossRefGoogle Scholar
  19. 19.
    Landry, C.R., Lemos, B., Rifkin, S.A., Dickinson, W.J., Hartl, D.L.: Genetic properties influcing the evolvability of gene expression. Science 317, 118–121 (2007)CrossRefGoogle Scholar
  20. 20.
    Masel, J., Trotter, M.V.: Robustness and evolvability. Trends Genet. 26, 406–414 (2010)CrossRefGoogle Scholar
  21. 21.
    McBride, R.C., Ogbunugafor, C.B., Turner, P.E.: Robustness promotes evolvability of thermotolerance in an RNA virus. BMC Evol. Biol. 8, 231 (2008)CrossRefGoogle Scholar
  22. 22.
    Reidys, C., Stadler, P.F., Schuster, P.: Generic properties of combinatory maps: neutral networks of RNA secondary structures. Bull. Math. Biol. 59(2), 339–397 (1997)CrossRefGoogle Scholar
  23. 23.
    Reisinger, J., Miikkulainen, R.: Acquring evolvability through adaptive representation. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1045–1052 (2007)Google Scholar
  24. 24.
    Rodrigues, J., Wagner, A.: Genotype networks, innovation, and robustness in sulfur metabolism. BMC Syst. Biol. 5, 39 (2011)CrossRefGoogle Scholar
  25. 25.
    Rothlauf, F., Goldberg, D.E.: Redundant representations in evolutionary computation. Evol. Comput. 11(4), 381–415 (2003)CrossRefGoogle Scholar
  26. 26.
    Schuster, P., Fontana, W., Stadler, P.F., Hofacker, I.L.: From sequences to shapes and back: a case study in RNA secondary structures. Proc. R. Soc. B 255, 279–284 (1994)CrossRefGoogle Scholar
  27. 27.
    Smith, T., Husbands, P., O’Shea, M.: Neutral networks and evolvability with complex genotype-phenotype mapping. In: Kelemen, J., Sosik, P. (eds.) Proceedings of the European Conference on Artificial Life, Lecture Notes in Artificial Intelligence, vol. 2159, pp. 272–281. Springer, Berlin (2001)Google Scholar
  28. 28.
    Song, D., Heywood, M.I., Zincir-Heywod, A.: A linear genetic programming approch to intrusion detection. In: Proceedings of the Genetic and Evolutionary Computation Conference. Lecture Notes in Computer Science, vol. 2724. Springer, Berlin (2001)Google Scholar
  29. 29.
    Soule, T.: Resilient individuals improve evolutionary search. Artif. Life 12, 17–34 (2006)CrossRefGoogle Scholar
  30. 30.
    Wagner, A.: Robustness, evolvability, and neutrality. Fed. Eur. Biochem. Soc. Lett. 579(8), 1772–1778 (2005)CrossRefGoogle Scholar
  31. 31.
    Wagner, A.: Robustness and evolvability: a paradox resolved. Proc. R. Soc. B 275(1630), 91–100 (2008)CrossRefGoogle Scholar
  32. 32.
    Yu, T., Miller, J.F.: Through the interaction of neutral and adaptive mutations, evolutionary search finds a way. Artif. Life 12, 525–551 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceMemorial UniversitySt. John’sCanada
  2. 2.BEACON Center of the Study of Evolution in Action, Michigan State UniversityEast LansingUSA

Personalised recommendations