Advertisement

A Generic Framework for Building Dispersion Operators in the Semantic Space

  • Luiz Otavio V. B. Oliveira
  • Fernando E. B. Otero
  • Gisele L. Pappa
Chapter
Part of the Genetic and Evolutionary Computation book series (GEVO)

Abstract

This chapter proposes a generic framework to build geometric dispersion (GD) operators for Geometric Semantic Genetic Programming in the context of symbolic regression, followed by two concrete instantiations of the framework: a multiplicative geometric dispersion operator and an additive geometric dispersion operator. These operators move individuals in the semantic space in order to balance the population around the target output in each dimension, with the objective of expanding the convex hull defined by the population to include the desired output vector. An experimental analysis was conducted in a testbed composed of sixteen datasets showing that dispersion operators can improve GSGP search and that the multiplicative version of the operator is overall better than the additive version.

Keywords

Genetic programming Geometric semantic genetic programming Dispersion operators Behavioral diversity Symbolic regression Search operators 

Notes

Acknowledgements

The authors would like to thank CAPES, FAPEMIG, and CNPq (141985/ 2015-1) for their financial support.

References

  1. 1.
    Albinati, J., Pappa, G.L., Otero, F.E.B., Oliveira, L.O.V.B.: The effect of distinct geometric semantic crossover operators in regression problems. In: Proceeding of the EuroGP, pp. 3–15 (2015)Google Scholar
  2. 2.
    Banzhaf, W., Nordin, P., Keller, R., Francone, F.: Genetic Programming—An Introduction: On the Automatic Evolution of Computer Programs and Its Applications. Morgan Kaufmann Publishers, San Francisco (1998)CrossRefGoogle Scholar
  3. 3.
    Beadle, L., Johnson, C.G.: Semantic analysis of program initialisation in genetic programming. Genet. Program Evolvable Mach. 10(3), 307–337 (2009)CrossRefGoogle Scholar
  4. 4.
    Botzheim, J., Cabrita, C., Kóczy, L.T., Ruano, A.E.: Genetic and bacterial programming for b-spline neural networks design. J. Adv. Comput. Intell. 11(2), 220–231 (2007)Google Scholar
  5. 5.
    Castelli, M., Vanneschi, L., Silva, S.: Semantic search-based genetic programming and the effect of intron deletion. IEEE Trans. Cybern. 44(1), 103–113 (2014)CrossRefGoogle Scholar
  6. 6.
    Castelli, M., Silva, S., Vanneschi, L.: A C++ framework for geometric semantic genetic programming. Genet. Program Evolvable Mach. 16(1), 73–81 (2015)CrossRefGoogle Scholar
  7. 7.
    Castelli, M., Trujillo, L., Vanneschi, L., Silva, S., Z-Flores, E., Legrand, P.: Geometric semantic genetic programming with local search. In: Proceeding of the GECCO’15, pp. 999–1006. ACM, New York (2015)Google Scholar
  8. 8.
    Castelli, M., Vanneschi, L., Silva, S., Ruberto, S.: How to exploit alignment in the error space: Two different GP models. In: Riolo, R., et al. (eds.) Genetic Programming Theory and Practice XII, Genetic and Evolutionary Computation, pp. 133–148. Springer International Publishing, Cham (2015)CrossRefGoogle Scholar
  9. 9.
    Gentle, J.E.: Numerical Linear Algebra for Applications in Statistics. Statistics and Computing. Springer, New York (1998)Google Scholar
  10. 10.
    Gonçalves, I., Silva, S., Fonseca, C.M.F.: On the generalization ability of geometric semantic genetic programming. In: Proceeding of the EuroGP, pp. 41–52 (2015)Google Scholar
  11. 11.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection, vol. 1. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  12. 12.
    Moraglio, A.: Abstract convex evolutionary search. In: Proceeding of the 11th FOGA, pp. 151–162 (2011)Google Scholar
  13. 13.
    Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic programming. In: Proceeding of PPSN XII, vol. 7491, pp. 21–31. Springer, Berlin (2012)Google Scholar
  14. 14.
    Ni, J., Drieberg, R.H., Rockett, P.I.: The use of an analytic quotient operator in genetic programming. IEEE Trans. Evol. Comput. 17(1), 146–152 (2013)CrossRefGoogle Scholar
  15. 15.
    Oliveira, L.O.V.B., Otero, F.E.B., Pappa, G.L.: A dispersion operator for geometric semantic genetic programming. In: Proceeding of the Genetic and Evolutionary Computation Conference, GECCO’16, pp. 773–780. ACM (2016)Google Scholar
  16. 16.
    Pawlak, T.P.: Competent algorithms for geometric semantic genetic programming. Ph.D. thesis, Poznan University of Technology, Poznan (2015)Google Scholar
  17. 17.
    Pawlak, T.P., Krawiec, K.: Semantic geometric initialization. In: Heywood, I.M., McDermott, J., Castelli, M., Costa, E., Sim, K. (eds.) Proceeding of the EuroGP’16. Lecture Notes in Computer Science, vol. 9594, pp. 261–277. Springer International Publishing, Cham (2016)Google Scholar
  18. 18.
    Roman, S.: Advanced Linear Algebra. Graduate Texts in Mathematics, vol. 135, 2nd edn. Springer, New York (2005)Google Scholar
  19. 19.
    Ruberto, S., Vanneschi, L., Castelli, M., Silva, S.: ESAGP - a semantic GP framework based on alignment in the error space. In: Proceeding of the EuroGP, pp. 150–161 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Luiz Otavio V. B. Oliveira
    • 1
  • Fernando E. B. Otero
    • 2
  • Gisele L. Pappa
    • 1
  1. 1.DCC, Universidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.School of ComputingUniversity of KentChatham MaritimeUK

Personalised recommendations