roboterfabrik: A Pilot to Link and Unify German Robotics Education to Match Industrial and Societal Demands

  • Sami Haddadin
  • Lars Johannsmeier
  • Johannes Schmid
  • Tobias Ende
  • Sven Parusel
  • Simon Haddadin
  • Moritz Schappler
  • Torsten Lilge
  • Marvin BeckerEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 829)


In this paper we introduce a novel robotics education concept entitled roboterfabrik. This approach is already implemented as a pilot project in the German educational system. Overall, we promote establishing the first generation of robotic natives. For this we need to provide both practical and theoretical experience in robotics to young people and give them access to state-of-the art, high performance yet affordable industrial robotic technology. Specifically, our approach systematically connects different existing school types, universities as well as companies. It comprises specialized lectures at the university, certified workshops and Robothons which are derived from the hackathon concept, and modified to the demand of roboticists.


Robotic Nature Robot Technology Human-robot Collaboration Dual Education System PANDA System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to sincerely thank the Region Hannover for their generous funding of the project roboterfabrik. We would also like to give special thanks to Reinhard Biederbeck from Region Hannover, Torsten Temmeyer from IHK Hannover, the teachers from the regional vocational schools BBS ME and BBS Neustadt for their support in creating the certification of the workshops. Special thanks go to Ina May from Roberta RegioZentrum Hannover and the participating pupils and students for active engagement and continuous valuable feedback.


  1. 1.
    Arras, K.O., Cerqui, D.: Do we want to share our lives and bodies with robots? a 2000 people survey. Technical report (2005)Google Scholar
  2. 2.
    Chollet, F., et al.: Keras (2015). Accessed 15 Sept 2017
  3. 3.
    Deutscher Industrie- und Handelskammertag: Education and training (2017). Accessed 15 Sept 2017
  4. 4.
    Eguchi, A.: Robotics as a learning tool for educational transformation. In: Proceeding of 4th International Workshop Teaching Robotics, Teaching with Robotics and 5th International Conference Robotics in Education, Padova, Italy, pp. 27–34 (2014)Google Scholar
  5. 5.
    Enz, S., Diruf, M., Spielhagen, C., Zoll, C., Vargas, P.A.: The social role of robots in the future—explorative measurement of hopes and fears. Int. J. Soc. Robot. 3(3), 263 (2011)CrossRefGoogle Scholar
  6. 6.
    Esposito, J.: The state of robotics education: proposed goals for positively transforming robotics education at postsecondary institutions. IEEE Robot. Autom. Mag. 24, 157–164 (2017)CrossRefGoogle Scholar
  7. 7.
    Franka Emika GmbH: FRANKA EMIKA (2017). Accessed 21 Aug 2017
  8. 8.
    Frey, C.B., Osborne, M.A.: The future of employment: how susceptible are jobs to computerisation? Technol. Forecast. Soc. Change 114, 254–280 (2017)CrossRefGoogle Scholar
  9. 9.
    German Federal Ministry of Education and Research: Service-Roboter statt Pflegeheim (results from representative phone interviews) (2016). Accessed 14 Sept 2017
  10. 10.
    Guizzo, E.: How to get students excited about engineering? Bring in the robots (review about a summer camp at GRASP lab) (2007). Accessed 29 Aug 2017
  11. 11.
    Haase, B.: Hannover soll führender Robotikstandort werden (2015). Accessed 29 Aug 2017
  12. 12.
    Haddadin, S., Johannsmeier, L., Becker, M., Schappler, M., Lilge, T., Haddadin, S., Schmid, J., Ende, T., Parusel, S.: Roboterfabrik: a pilot to link and unify german robotics education to match industrial and societal demands. In: Companion of the 2018 ACM/IEEE International Conference on Human-Robot Interaction, pp. 375–375. ACM (2018)Google Scholar
  13. 13.
    Intel: Intel RealSense SR300 (2016). Accessed 29 Aug 2017
  14. 14.
    Jambor, T.N.: Techcolleges: learn to teach using robots. In: International Conference on Robotics and Education RiE 2017, pp. 3–14. Springer (2017)Google Scholar
  15. 15.
    Jäger, A., Moll, C., Som, O., Zanker, C.: Analysis of the impact of robotic systems on employment in the european union. Technical report, Fraunhofer Institute for Systems and Innovation Research ISI, Karlsruhe (2015)Google Scholar
  16. 16.
    Kopf, H., Müller, S., Rüede, D., Lurtz, K., Russo, P.: Einführung: made in Germany? Fachkräftemangel gefährdet den Wirtschaftsstandort Deutschland. In: Soziale Innovationen in Deutschland, pp. 61–63. Springer (2015)Google Scholar
  17. 17.
    Kriegseisen-Peruzzi, M.: Ergotherapeutisch-handlungswissenschaftliche Zugänge als Ressource in der Entwicklung neuer Technologien: Begleitstudie zum ersten Robothon an der FH Salzburg. Fachtagung Ergotherapie Austria (2016). Accessed 29 Aug 2017
  18. 18.
    Merz, R.: Robothon Fachhochschule Salzburg (2015). Accessed 21 Aug 2017
  19. 19.
    Meyer, S.: Einsatz von Robotik in der Pflege - was zeichnet sich ab? In: Der Demographiekongress (2017)Google Scholar
  20. 20.
    Microsoft: Kinect V2 (2014). Visited on 29th of August 2017
  21. 21.
    Nomura, T., Suzuki, T., Kanda, T., Han, J., Shin, N., Burke, J., Kato, K.: What people assume about humanoid and animal-type robots: cross-cultural analysis between Japan, Korea, and the United States. Int. J. Humanoid Robot. 5(01), 25–46 (2008)CrossRefGoogle Scholar
  22. 22.
    Nomura, T., Suzuki, T., Kanda, T., Yamada, S., Kato, K.: Attitudes toward robots and factors influencing them. In: New Frontiers in Human-Robot Interaction, pp. 73–88 (2011)Google Scholar
  23. 23.
    Nomura, T., Tasaki, T., Kanda, T., Shiomi, M., Ishiguro, H., Hagita, N.: Questionnaire-based research on opinions of visitors for communication robots at an exhibition in Japan. Lect. Notes in Comput. Sci. 3585, 685 (2005)CrossRefGoogle Scholar
  24. 24.
    Open Source: TensorFlow: Large-scale machine learning on heterogeneous systems (2017). Accessed 30 Aug 2017
  25. 25.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Ray, C., Mondada, F., Siegwart, R.: What do people expect from robots? In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, pp. 3816–3821. IEEE (2008)Google Scholar
  27. 27.
    Riek, L.D., Adams, A., Robinson, P.: Exposure to cinematic depictions of robots and attitudes towards them. In: Proceedings of International Conference on Human-Robot Interaction, Workshop on Expectations and Intuitive Human-Robot Interaction (2011)Google Scholar
  28. 28.
    Sahi, M.K., Kaul, A.: Consumer robotics - household robots, vacuum robots, lawn mowing robots, pool cleaning robots, personal assistant robots, and toy and educational robots: Global market analysis and forecasts (2017)Google Scholar
  29. 29.
    Suzuki, K., Zhu, X.: Regions bustle with workshops, courses, robothon, and a society inauguration [chapter news]. IEEE Robot. Autom. Mag. 23(4), 193–198 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sami Haddadin
    • 1
  • Lars Johannsmeier
    • 1
  • Johannes Schmid
    • 2
  • Tobias Ende
    • 2
  • Sven Parusel
    • 2
  • Simon Haddadin
    • 2
  • Moritz Schappler
    • 1
  • Torsten Lilge
    • 1
  • Marvin Becker
    • 1
    Email author
  1. 1.Institute of Automatic ControlGottfried Wilhelm Leibniz Universität HannoverHanoverGermany
  2. 2.Franka Emika GmbHMunichGermany

Personalised recommendations