Virtual Archaeoastronomy: Stellarium for Research and Outreach

  • Georg ZottiEmail author
  • Bernard Frischer
  • Florian Schaukowitsch
  • Michael Wimmer
  • Wolfgang Neubauer
Part of the Historical & Cultural Astronomy book series (HCA)


In the last few years, the open-source desktop planetarium program Stellarium has become ever more popular for research and dissemination of results in Cultural Astronomy.

In this time we (LBI ArchPro and TU Wien) have added significant capabilities for applications in Cultural Astronomy to the program, in particular a way to allow virtual 3D exploration of architecture from any period. The major part of this chapter describes our recent accomplishments for allowing its use in a multi-screen installation running both completely automated and manually controlled setups in an exhibition about Stonehenge. During the development time, also the accuracy of astronomical simulation has been greatly improved. The final part of this chapter (authored by B. Frischer) presents the latest application examples, in particular of these 3D capabilities, for Cultural Astronomy research in the Roman world.



The Skyscape Planetarium was developed as part of the exhibition project ‘STONEHENGE. A Hidden Landscape’ at the MAMUZ Museum Mistelbach in Austria, which provided considerable developing time for the new and improved features presented here that were published in Stellarium version 0.15.0 (released 31 July 2016).

The 3D models and renderings of the Stonehenge landscape were created by LBI ArchPro’s partner 7reasons.

In the weeks before the opening, we were supported also by Stellarium maintainer Alexander Wolf (Barnaul, Russia) who even created a new customized installer package with some critical corrections built overnight just in time to set up at the Museum 2 days before the opening.

Florian’s work on the RemoteControl plugin was supported by the ESA Summer of Code in Space programme 2015.

The Ludwig Boltzmann Institute for Archaeological Prospection and Virtual Archaeology ( is based on an international cooperation of the Ludwig Boltzmann Gesellschaft (Austria), the University of Vienna (Austria), the Vienna University of Technology (Austria), ZAMG-the Austrian Central Institute for Meteorology and Geodynamics (Austria), the Province of Lower Austria (Austria), Airborne Technologies (Austria), 7reasons (Austria), the Austrian Academy of Sciences (Austria), the Austrian Archaeological Institute (Austria), RGZM-the Roman-Germanic Central Museum Mainz (Germany), the National Historical Museums—Contract Archaeology Service (Sweden), the University of Birmingham (England), the Vestfold County Council (Norway) and NIKU-the Norwegian Institute for Cultural Heritage Research (Norway).


  1. Belmonte, J. A., Shaltout, M., & Fekri, M. (2009). Astronomy, landscape, and symbolism: A study of the orientation of ancient Egyptian temples. In J. A. Belmonte & M. Shaltout (Eds.), Search of cosmic order. Selected essays on Egyptian archaeoastronomy (pp. 213–283). Cairo: Supreme Council of Antiquities Press.Google Scholar
  2. Buchner, E. (1976). Solarium Augusti und Ara Pacis. Römische Mitteilungen, 83, 19–65.Google Scholar
  3. Champeaux, J. (1982). Fortuna. Le Culte de la Fortune à Rome et dans le Monde Romain. 2 Volumes. Rome: Publications de l’École Française de Rome.Google Scholar
  4. Degrassi, A. (1963). Fasti et Elogia, Inscriptiones Italiae, Volume 13, Fasc. 2. Rome: Istituto Poligrafico dello Stato.Google Scholar
  5. Fernando, R. (2005). Percentage-closer soft shadows. In SIGGRAPH ‘05: ACM SIGGRAPH 2005 Sketches. New York: ACM Press.Google Scholar
  6. Folkner, W. M., Williams, J. G., Boggs, D. H., Park, R. S., & Kuchynka, P. (2014). The planetary and lunar ephemerides DE430 and DE431. JPL/NASA (IPN Progress Report 42–196).
  7. Frischer, B. (2017–2018). Edmund Buchner’s Solarium Augusti: New observations and simpirical studies, with technical appendices by Paolo Albèri Auber, David Dearborn, John Fillwalk, Mika Kajava, and Stefano Floris. Rendiconti della Pontificia Accademia Romana di Archeologia, 89, 3–100.Google Scholar
  8. Frischer, B., Zotti, G., Mari, Z., & Vittozzi, G. C. (2016). Archaeoastronomical experiments supported by virtual simulation environments: Celestial alignments in the Antinoeion at Hadrian’s Villa (Tivoli, Italy). Digital Applications in Archaeology and Cultural Heritage, 3, 55–79.CrossRefGoogle Scholar
  9. Frischer, B., Pollini, J., Cipolla, N., Capriotti, G., Murray, J., Swetnam-Burland, M., Galinsky, K., Häuber, C., Miller, J., Salzman, M. R., Fillwalk, J., & Brennan, M. R. (2017). New light on the relationship between the Montecitorio Obelisk and the Ara Pacis of Augustus. Studies in Digital Heritage, 1, 18–119.CrossRefGoogle Scholar
  10. Gaffney, C., Gaffney, V., Neubauer, W., Baldwin, E., Chapman, H., Garwood, P., Moulden, H., Sparrow, T., Bates, C. R., Löcker, K., Hinterleitner, A., Trinks, I., Nau, E., Zitz, T., Floery, S., Verhoeven, G., & Doneus, M. (2012). The Stonehenge hidden landscapes project. Archaeological Prospection, 19, 147–155.CrossRefGoogle Scholar
  11. Galimberti, A. (2012). Adriano e Antinoo nelle fonti storiche. In M. S. Ragni (Ed.), Antinoo. Il Fascino della Bellezza (pp. 30–37). Milan: Electa.Google Scholar
  12. Galli, M. (2012). Il culto e le immagini di Antinoo. In M. S. Ragni (Ed.), Antinoo. Il Fascino della Bellezza (pp. 38–63). Milan: Electa.Google Scholar
  13. Grenier, J.-C. (2008). L’Osiris Antinoos, Cahiers Égypte Nilotique et Méditerranéenne I. Montpellier.Google Scholar
  14. Hannestad, N. (1982). Über das Grabmal des Antinoos. Topographische und thematische Studien im Canopus-Gebiet der Villa Adriana. Analecta Romana Instituti Danici, 11, 69–108.Google Scholar
  15. Kähler, H. (1975). Zur Herkunft des Antinousobelisken. Acta ad Archaeologiam et Artium Historiam Pertinentia, 6, 35–44.Google Scholar
  16. Lanciani, R. (1906). La Villa Adriana. Guida e Descrizione. Rome: Tip. della R. Accademia dei Lincei.Google Scholar
  17. Löcker, K., Baldwin, E., Neubauer, W., Gaffney, V., Gaffney, C., Hinterleitner, A., Garwood, P., Trinks, I., & Wallner, M. (2013). The Stonehenge Hidden Landscape Project – Data acquisition, processing, interpretation. In W. Neubauer et al. (Eds.), Archaeological prospection. Proceedings of the 10 th International Conference on Archaeological Prospection, Vienna May 29 th –June 2 nd , 2013 (pp. 107–109). Vienna: Austrian Academy of Sciences Press.Google Scholar
  18. Magli, G. (2013). Architecture, astronomy and sacred landscape in ancient Egypt. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  19. Mari, Z. (2012). Antinoo a Villa Adriana. In M. S. Ragni (Ed.), Antinoo. Il Fascino della Bellezza (pp. 79–91). Milan: Electa.Google Scholar
  20. Mari, Z., & Sgalambro, S. (2007). The Antinoeion of Hadrian’s Villa: Interpretation and architectural reconstruction. American Journal of Archaeology, 111, 83–104.CrossRefGoogle Scholar
  21. McCarthy, D. D., & Luzum, B. J. (2003). An abridged model of the precession-nutation of the celestial pole. Celestial Mechanics and Dynamical Astronomy, 85, 37–49.ADSCrossRefGoogle Scholar
  22. Silva, F., & Campion, N. (Eds.). (2015). Skyscapes: The role and importance of the sky in archaeoastronomy. Oxford: Oxbow Books.Google Scholar
  23. Stellarium website: (seen on 21 June 2017).
  24. Vondrák, J., Capitaine, N., & Wallace, P. (2011). New precession expressions, valid for long time intervals. Astronomy & Astrophysics, 534, A22 (19 pages).Google Scholar
  25. Vondrák, J., Capitaine, N., & Wallace, P. (2012). New precession expressions, valid for long time intervals (Corrigendum). Astronomy & Astrophysics, 541, C1 (1 page).Google Scholar
  26. Zotti, G. (2015). Visualization tools and techniques. In C. L. N. Ruggles (Ed.), Handbook for archaeoastronomy and ethnoastronomy, Volume 1 (pp. 445–457). New York: Springer.Google Scholar
  27. Zotti, G. (2016). Open-source virtual archaeoastronomy. Mediterranean Archaeology and Archaeometry, 16(4), 17–23.Google Scholar
  28. Zotti, G., & Neubauer, W. (2012). A virtual reconstruction approach for archaeoastronomical research. In G. Guidi & A. C. Addison (Eds.), Proceedings of the virtual systems in the information society (pp. 33–40). Milano: IEEE.Google Scholar
  29. Zotti, G., & Neubauer, W. (2015). Astronomical and topographical orientation of Kreisgrabenanlagen in Lower Austria. In F. Pimenta, N. Ribeiro, F. Silva, N. Campion, A. Joaquinito, & L. Tirapicos (Eds.), SEAC2011: Stars and stones: Voyages in archaeoastronomy and cultural astronomy (pp. 188–193). Oxford: Archaeopress.Google Scholar
  30. Zotti, G., Wilkie, A., & Purgathofer, W. (2006). Using virtual reconstructions in a planetarium for demonstrations in archaeo-astronomy. In C. S. Lanyi (Ed.), Third Central European multimedia and virtual reality conference (pp. 43–51). Veszprém: Pannonian University Press.Google Scholar
  31. Zotti, G., Schaukowitsch, F., & Wimmer, M. (2017). The Skyscape planetarium. In The marriage of astronomy and culture: Theory and method in the study of cultural astronomy (Papers from the 2016 SEAC Conference). Culture and Cosmos, Vol. 21 no. 1–2.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Georg Zotti
    • 1
    Email author
  • Bernard Frischer
    • 2
  • Florian Schaukowitsch
    • 3
  • Michael Wimmer
    • 3
  • Wolfgang Neubauer
    • 1
  1. 1.Ludwig Boltzmann Institute for Archaeological Prospection and Virtual Archaeology (LBI ArchPro)ViennaAustria
  2. 2.Department of InformaticsIndiana UniversityBloomingtonUSA
  3. 3.Institute of Visual Computing and Human-Centered TechnologyTU WienViennaAustria

Personalised recommendations