Cognitive Decline and Dementia in Some Chronic Disorders

  • Nages NagaratnamEmail author
  • Gary Cheuk


The aim of this chapter is to review the association between cognitive impairment and four selected chronic conditions, namely, hearing loss, vitamin B12 and folate deficiencies, thyroid disease and diabetes mellitus. This chapter focuses on the prevalence, pathophysiology and the mechanistic effects of cognitive decline in these disorders. In the first section, hearing loss is discussed. In the second section, a comprehensive review covering the many aspects of vitamin B12 and folate deficiencies is presented. In the third section, thyroid disorders in relation to cognitive decline are discussed. The last section discusses diabetes mellitus and the many mechanisms through which diabetes mellitus increases the risk of cognitive impairment and dementia.


Hearing loss Vitamin B12 and folate deficiencies Thyroid disease Diabetes mellitus Dementia Cognitive impairment 


I. Hearing Loss and Cognitive Decline

  1. 1.
    Kravitz E, Schmeidler J, Beeri MS. Cognitive decline and dementia in the oldest-old. Rambam Maimonides Med J. 2012;3(4):e0026. Scholar
  2. 2.
    Slavin MJ, Bridaty H, Sachdev PC. Challenges of diagnosing dementia in the oldest old population. Review Article. J Geronto A Biol Sci Med Sco. 2013;68(9):1103–11.CrossRefGoogle Scholar
  3. 3.
    Limongi F, Noae M, Siviero P, Crepaldi G, Maggi S. Epidenmiology of aging dementia and age-related hearing loss. Hearing Balance Commun. 2015;13(3) Accessed 6 March 2017CrossRefGoogle Scholar
  4. 4.
    Cruickshanks KJ, Wiley TL, Tweed TS, Klein BE, Jlein R, Mares-Perlman JA, et al. Prevalence of hearing loss in older adults in beaver dam, wincosin, the epidemiology of hearing loss study. Am J Epidemiol. 1998;148:874–86.CrossRefGoogle Scholar
  5. 5.
    Chen W, Lin FR. Prevalence of hearing aid use among older adults in the United States. Arch Intern Med. 2012;172(3):292–3.CrossRefGoogle Scholar
  6. 6.
    Solheim J, Shirvaeva O, Kvaerner KJ. Lack of ear care knowledge in nursing homes. J Multidiscip Healthc. 2016;9:481–8.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Martini A. Hearing balance and communication problems in the elderly: Editorial. J Hearing Balance Commun. 2015;13(2)
  8. 8.
    Feder K, Michaund D, Ramage-Morin S, McNamee J, Beauregard Y. Prevalence of hearing loss among Canadians 20 to 79: audiometric results from 2012/2013. Canadian health measures survey. Health Rep. 2015;26:18–25.PubMedGoogle Scholar
  9. 9.
    Davis A, Davis KA. Epidemiology of aging and hearing loss related to other chronic illnesses. Accessed 6 March 2017.
  10. 10.
    Tavanai E, Mohammadkhani G. Role of antoxidants in prevention of age-related hearing loss: a review of literature. Eur Arch Otorhinolaryngol. 2017;274(4):1821–34.PubMedCrossRefGoogle Scholar
  11. 11.
    Fujimoto C, Yamasoba T. Oidative stress and mitochondrial dysfunction in age-related hearing loss. Oxod Med Cell Longev. 2014;2014:582849. Scholar
  12. 12.
    Martini A, Bovo R, Agnoletto M, Da Col M, Drusian A, Liddeo M, et al. Dichotic performance in elderly Italians with Italian stop consonant-vowel stimul. Audiology. 1988;27:1–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Yamasoba T, Lin FR, Someya S, Kashio A, Sakamoto T, Kondo K. Current concepts in age-related hearing loss: Epidemoiology amd mechanistic pathways. Hear Res. 2013;303:30–8.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Eckert MA, Cute SL, Vaden KL Jr, Kuchinsky SE, Dubno JR. Auditory cortex signs of age-related hearing loss. J Assoc Res Otolaryngol. 2012;13:703–13.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Husain FT, Medina RE, Davis CW, Szymko-Bennett Y, Simonyan K, Pajor NM, et al. Neuroanatomical changes due to hearing loss and chronic tinnitus: a combined VBM and DTI study. Brain Res. 2011;1369:74–88.PubMedCrossRefGoogle Scholar
  16. 16.
    Cardin V. Effects of aging and adult0onset hearing loss on cortical auditory regions. Front Neurosci. 2016;10:199. Accessed 8 March 2017CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ouda L, Profant O, Syka J. Age-related changes in the central auditory system. Cell Tissue Res. 2015;36(1):337–58.CrossRefGoogle Scholar
  18. 18.
    Rigters SC, Bos D, Metselaar M, Roshchupkin GV, Baatenburg de Jong RJ, Ikram MA, et al. Hearing impairment is associated with smaller brain volume in aging. Front Aging Neurosci. 2017;9:2. Scholar
  19. 19.
    Lin FR, Ferrucci L, An Y, Goh JO, Doshi J, Metter EJ, et al. Association of hearing impairment with brain volume changes in older adults. NeuroImage. 2014;90:84–92.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Wang CH, Wu SB, Wu YT, Wei YH. Oxidative stress response elicited by mitochondrial dysfunction implication in the pathophysiology of aging. Exp Biol Med (Maywood). 2013;238(5):450–60.CrossRefGoogle Scholar
  21. 21.
    Seidman MD, Khan MJ, Bai U, Shirwany N, Quirk WS. Biologic activity of mitochondrial metabolites on aging and age-related hearing loss. Am J Otol. 2000;21(2):161–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Lin FR. Hearing loss and cognition among older adults in the United States. J Gerontol A Biol Sci Med Sci. 2011;66(10):1131–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Uhlmann RF, Larson EB, Rees TS, Koepsell TD, Duckert LG. Relationship of hearing impairment to dementia and cognitive dysfunction in older adults. JAMA. 1989;261:1916–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Lin FR, Metter EJ, O’Brien RJ, Resnick SM, Zonderman AB, Ferrrucci L. Hearing loss and incident dementia. Arch Neurol. 2013;68(2):214–20.Google Scholar
  25. 25.
    Martini A, Comacchio F, Magnavita V. Auditory evoked responses (ABR<MLR<SVR) and brain mapping I the elderly. Acta Otolaryngol Suppl. 1990;476:97–103.PubMedGoogle Scholar
  26. 26.
    Lin FR, Yaffe K, Xia J, Xue QL, Harris TB, Purchase-Helzner E, et al. Hearing impairment and cognitive decline in adults. JAMA Intern Med. 2013;173(4):293–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Panza F, Solfrizzi V, Logroscino G. Age-related hearing impairment – a risk factor and frailty marker for dementa and AD. Nat Rev Neurol. 2015;11:166–75.PubMedCrossRefGoogle Scholar
  28. 28.
    Ives DG, Bonino P, Traven ND, Kuller LH. Characteristics and co-morbidities of rural older adults with hearing impairment. J Am Geriatr Soc. 1995;43:803–80.PubMedCrossRefGoogle Scholar
  29. 29.
    Lin FR, Thorpe R, Gordon-Salant S, Ferrucci L. Hearing loss prevalence and risk factors among older adults in the United States. J Gerontol A Biol Sci Med Sci. 2011;66:582–90.PubMedCrossRefGoogle Scholar
  30. 30.
    Kochkin S, Rogin CMA. Quantifying the obvious: The impact of hearing instruments on quality of life. Hearing Review. 2000;7(1):34.CrossRefGoogle Scholar
  31. 31.
    Oyler AL. Untreated hearing loss in adults -a Growing National Epidemic. http://www.asha.ord/Aud/articles/Untreated -Hearing-Loss-in-Adults/ Accessed 2 Oct 2015.

II. Vitamin B12 and Folate and the Risk of Cognitive Decline

  1. 32.
    Wahlin A, Backman L, Hultdin J, Adolfsson R, Nilsson L-G. Reference values for serum levels of vitamin B12 and folic aid in a population-based sample of adults between 35 and 80 years ofage. Public Health Nutr. 2002;5(3):505–11.PubMedCrossRefGoogle Scholar
  2. 33.
    Wolters M, Strohle A, Hahn A. Age-associated changes in the metabolism of vitamin B(12) and folic acid: prevalence, aetiopathogenesis and pathophysiological consequences. Gerontol Geriatr. 2004;37(2):109–35.CrossRefGoogle Scholar
  3. 34.
    Tucker KL, Qiao N, Scott T, Rosenberg I, Spiro A III. High homocysteine and low B vitamins predict cognitive decline in aging men: the Veteran’s affaires normative aging study 1′2’3′4. Am J Clin Nutr. 2005;82(3):627–35.PubMedCrossRefGoogle Scholar
  4. 35.
    Brzozowska A, Sicinska E, Roszkowski W. Role of folates ithe nutrition of the elderly. Rocz Panstw Zaki Hig. 2004;55(2):159–64.Google Scholar
  5. 36.
    Koehler KM, Pareo-Tubbeh SL, Romero LJ, Baumgartener RN, Garry PJ. Folate nutrition ad older adults: challenges and opportunities. J Am Diet Assoc. 1997;97(2):167–73.PubMedCrossRefGoogle Scholar
  6. 37.
    Flood VM, Smith WT, Webb KL, Rochtchina E, Anderson V, Mitchell P. Prevalence of low serum folate and vitamin B12 in older Australian population. Aust NZ J Public Health. 2006;30(1):38–41.CrossRefGoogle Scholar
  7. 38.
    Meziere A, Audureau E, Vairelles S, Krypciak S, Docko M, Monie M, et al. B12 deficiency increases with age in hospitalized patients. A study on 14,904 samples. J Gerontol Abiol Med Sci. 2014;69(12):1576–85.CrossRefGoogle Scholar
  8. 39.
    Baik HW. Russel: Vitamin B12 deficiency in the elderly. Annu Rev Nutr. 1999;19:357–7.PubMedCrossRefGoogle Scholar
  9. 40.
    Andres E, Lukili MH, Noel E, Kaltenbach G, Abdelgheni MB, Perrin AE, et al. Vitamin B12 (cobalamin) deficiency in elderly patients. CMAJ. 2004;171(3):251–9.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 41.
    Pennypacker LC, Allen RH, Kelly JP, et al. High prevalence of cobalamin deficiency in elderly outpatients. J Am Geriatr Soc. 1992;40(12):1197–961.PubMedCrossRefGoogle Scholar
  11. 42.
    Hausman D, Johnson MA, Davey A, Stabler S. The oldest old: red blood cell and plasma folate in African American and white octagenarians and centenarians in Georgia. J Nutr Health Aging. 2011;15(9):744–50.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 43.
    Risch M, Meier DW, Sakem B, Escobar PM, Risch C, Nydegger U, Risch L. Vitamin B12 and folate levels in healthy Swiss senior citizens: a prospective study evaluating reference intervals and decision limits. BMC Geriatrcs. 15:82.
  13. 44.
    Mooijaart SP, Gussekloo J, Frolich M, Jolles J, Stott DJ, Weatendorp RJ, de Craen AJM. Homocysteine vitamin b12 and folic acid and the risk of cognitive decline in old age: the Leiden 85-Plus Study 1’2’3. Am J Clin Nutr. 2005;82(4):866–71.PubMedCrossRefGoogle Scholar
  14. 45.
    Hutto BR. Folate and cobalamin in psychiatric illness. Comp Psychiatry. 1997;6:305–14.CrossRefGoogle Scholar
  15. 46.
    Carney MWP, Toone BK, Reynolds EH. S- Sdenosylmethionine and affective disorder. Am J Med. 1987;83(Suppl 5A):104–6.PubMedCrossRefGoogle Scholar
  16. 47.
    Levitt AJ, Joffe RT. Vitamin B12 and life course of depressive illness. Biol Psychiatry. 1989;25:867–72.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 48.
    Shane B, Stokstad ELR. Vitamin B-12 –folate interrelationships. Annu Rev Nutr. 1995;5:115–41.CrossRefGoogle Scholar
  18. 49.
    Lewerin C, Ljungman S, Nilsson-Ehle H. Glomerular filtration rate as measured by serum cystatin C is an important determinant of plasma homocysteine and serum methylmalonic acid in the elderly. J Intern Med. 2007;261(1):65–73.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 50.
    Miller JW. Assessing the association between vitamin B12 status and cognitive function in older adults. Am J Clin Nutr. 2006;84(6):1259–60.PubMedCrossRefGoogle Scholar
  20. 51.
    D’Anci KE, Rosenberg IH. Folate and brain function in the elderly. Curr Opin Clin Nutr Metab Care. 2004;7(6):659–64.PubMedCrossRefGoogle Scholar
  21. 52.
    Mischoulon D, Raab MF. The role of folate in depression and dementia. J Clin Psychiatry. 2007;68(Suppl 10):28–33.PubMedGoogle Scholar
  22. 53.
    Ramos M, Allen LH, Mungas DM, Jagust WJ, Haan M, Green R, et al. Low folate states is associated with impaired cognitive function and dementia in the Sacromento area Latino study in aging. Am J Clin Nutr. 2005;82:1346–52.PubMedCrossRefGoogle Scholar
  23. 54.
    Clarke R, Smith AD, Jobst KA, Refsum H, Sutton L, Ueland PM. Folate, vitamin B12 and serum total homocysteine levels in confirmed Alzheimer’s disease. Arch Neurol. 1998;55(11):1449–55.PubMedCrossRefGoogle Scholar
  24. 55.
    Quadri P, Fragiacomo C, Pezzati R, Zanol L, Forloni C, Tettamanti M, et al. Homocysteine, folate and vitamin B12 in mild cognitive impairment, Alzheimer’s disease and vascular dementia. Am J Clin Nutr. 2004;80:114–22.PubMedGoogle Scholar
  25. 56.
    Vogel T, Dali-Youcef N, Kaltenbach G, Andrea E. Homocystene,vitamin B12,folate and cognitive functions: a syatematic and critical review of the literature. Int J Clin Pract. 2009;,2009.02026x.
  26. 57.
    Hin H, Clarke R, Sherliker P, Atoyebi W, Emmes K, Birks J, et al. Clinical relevance of low serum B12 concentrations in older people: the Babbury B12 Study. Age Aging. 2006;35:4116–22.CrossRefGoogle Scholar
  27. 58.
    Lei F, Ng T-P, Chuah L, Niti M, KuaE-H. Homocysteine,folate and vitamin B12 and cognitive performance in older Chinese adults: findings fro the Singapore Longitudinal Ageing Study1’2’3. Am J Clin Nutr. 2006;84(6):1506–12.CrossRefGoogle Scholar
  28. 59.
    Allen RH, Stabler SP, Savage DL, Lindenhaum J. Metabolic abnormalities in cobalamin (vitamin B12) and folate deficiency. FASEB J. 1993;7:1344–53.PubMedCrossRefGoogle Scholar
  29. 60.
    Miller JW, Green R, Ramos MI, Allen LH, Mungas DM, Jagust WJ, et al. Homocysteine and cognitive function in the Sacromento area Latino study on aging. 1′2’3′4. Am J Clin Nutr. 2003;7:441–7.CrossRefGoogle Scholar
  30. 61.
    Prins ND, Den Heyer T, Holman A, Kondstaat PJ, Joless J, Clarke R, et al. Homocysteine and cognitive function in the elderly. The Rotterdam Study. Neurology. 2002;59:1375–80.PubMedCrossRefGoogle Scholar
  31. 62.
    Malouf R, Grimley Evans J, Areosa ASastra A. Folic acid with and without vitamin B12 for cognition and dementia (Cochrane Review). In: et al. The Cochrane Library, Issue 3. Chichester, UK: Wiley & Sons Ltd; 2004.Google Scholar
  32. 63.
    Malouf R, Areosa ASastra A. Vitamin B12 for cognition and dementia (Cochrane Review). In: et al. The Cochrane Library, Issue 3. Chichester, UK: Wiley & Sons Ltd; 2004.Google Scholar

III. Some Aspects of Thyroid Dysfunction in the Elderly

  1. 64.
    Chiovato L, Mariotti S, Pinchera A. Thyroid diseases in the elderly. Bailliere Clin Endocrinol Metab. 1997;11(2):251–70.CrossRefGoogle Scholar
  2. 65.
    Faggiano A, Del Prete M, Marciello F, Marrotta V, Ramundo V, Colao A. Thyroid diseases in the elderly. Minnerva Endocrinol. 2011;36(3):211–31.Google Scholar
  3. 66.
    Ozbakir O, Dogukan A, Kelestimur F. The prevalence of thyroid dysfunction among elderly subjects inendemic goiter area of Central Anatolia. Endocr J. 1995;42(5):713–6.PubMedCrossRefGoogle Scholar
  4. 67.
    Kumar H, Singh VB, Meena BL, Gaur S, Singla R, Sisdiva MS. Clinical profile of thyroid dysfunction in elderly: an overview. Thyroid Res Pract. 2016;13:101–5.CrossRefGoogle Scholar
  5. 68.
    Clarnette RM, Patterson CJ. Hypothyroidism : does treatment cure dementia? J Geriatr Psychiatry Neurol. 1994;7:23–7.PubMedCrossRefGoogle Scholar
  6. 69.
    Formiga F, Ferrer A, Padros G, Contra A, Crbella X, Pjol R, et al. Thyroid status and functional and cognitive status at baseline and survival after 3 tears of follow-up: the OCTABAIX study. Eur J Endocrinol. 2013;170(1):69–75.PubMedCrossRefGoogle Scholar
  7. 70.
    Wilson GR, Curry RW Jr. Subclinical thyyroid disease. Am Fam Physician. 2005;72(8):1517–24.PubMedGoogle Scholar
  8. 71.
    Mariotti S. Editorial. Thyroid function and aging: Do serum 3,4,3’-triiodothyronine and thyroid-stimulating hormone concentrations give the Janus response? J Clin Endocrinol Metab. Scholar
  9. 72.
    Aghini-Lombardi F, Antonangeli L, Martino E, Vitti P, Maccherini D, Leoli F, et al. The spectrum of thyroid disorders in an iodine-deficient community the Pescopagano survey. J Clin Endorinol Metb. 1999;84:51–566.Google Scholar
  10. 73.
    Biondi B, Cooper DS. The clinical significance of subclinical thyroid dysfunction. Endocr Rev. 2008;29:76–131.PubMedCrossRefGoogle Scholar
  11. 74.
    Wijsman LW, de Craen AJ, Trompet S, Gussekloo J, Stott DJ, Rodondi N, et al. Subclincal thyroid dysfunction and cognitive decline in old age. PloS One. 2013;8(3):e59199. Scholar
  12. 75.
    Mitchell AL, Razvi S, Pearce SH, & 85+Study Core Team. Thyroid function in a cohort of eighty five year olds: the Newcastle 85+study. Endocrine Abstracts. 2009;19:363.Google Scholar
  13. 76.
    Begin ME, Langlois MF, LorrainD CSC. Thyroid function and cognition with aging. Curr Gerontol Geriatr Res. 2008;2008:474868. Scholar
  14. 77.
    Mariotti S, Franceschi C, Cossarizza A, Pinchera A. The aging thyroid. Endocr Rev. 1995;16:686–715.PubMedCrossRefGoogle Scholar
  15. 78.
    Ceresini G, Lauretani F, Maggio M, Ceda GP, Morganti S, Usberti E, et al. Thyroid function abnormalities and cognitive impairment in elderly people: results of the Invecchiare chianti study. J Am Geriatr Soc. 2009;57(1):89–93.PubMedCrossRefGoogle Scholar
  16. 79.
    Nakajima Y, Yamada M. Subclinical thyroid disease. Nihon Rinsho. 2012;70(11):1865–71.PubMedGoogle Scholar
  17. 80.
    Cooper DS, Biondi B. Sunclinical y=thyroid disease. Lancet. 2012;379:1142–54.PubMedCrossRefGoogle Scholar
  18. 81.
    Surks MI, Boucai L. Age-and-race-based serum thyrotropin reference limits. J Clin Endocrinol Metab. 2010;95:496–502.PubMedCrossRefGoogle Scholar
  19. 82.
    Ochs N, Auer R, Bauer DC, Nanchen D, Gussekloo J, Cornuz J, et al. Met-analysis: subclinical thyroid dydfuction ad risk for coronary heart disease and mortality. Ann Intern Med. 2008;148:832–45.PubMedCrossRefGoogle Scholar
  20. 83.
    Chahal HS, Drake WM. The endocrine system and ageing. J Pathol. 2007;211:173–18.PubMedCrossRefGoogle Scholar
  21. 84.
    Over R, Mannan S, Nsouli-Marktabi H, Burman KD, Jonklass J. Age and thyrotropin response tohypothyroxinemia. J Clin Endocrinol Metab. 2010;95:3675–83.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 85.
    Benal J. Thyroid hormones amd brain development. Viram Harm. 2005;71:95–122.Google Scholar
  23. 86.
    Annerbo S, Lokk J. A clinical review of the association of thyroid stimulating hormone and cognitive impairment. ISRN Enocrinol. 2013;2013:1. Scholar
  24. 87.
    Gan EH, Pearce SHS. The thyroid in mild cognitive impairment and low thyrotropin in older people. J Clin Endocrinol Metab. 2012;97(10):3431–49.CrossRefGoogle Scholar
  25. 88.
    Ceresini G, Lauretani F, Maggio M, Cappola AR. Subclinical hyperthyroidism is the most prevalent thyroid dysfunction in older Italians and is associated with cognitive impairment. _hyperthyroidism_is_the_most_prevalent_thyroid_dysfunction_in_older_Italians_and_is_associated_with cognitive_impairment.Google Scholar
  26. 89.
    Gesing A, Lewinski A, Karbownik-Lewinska M. The thyroid gland and the process of aging; what is new? Thyroid Research. 2012;5:16. Scholar
  27. 90.
    De Jongh RT, Lips P, van Schoor NM, Rijs KJ, Deeg DJ, Comijs HC, et al. Endogenous subclinical thyroid disorders, physical and cognitive function., depression and mortality in older individuals. Eur J Endocrinol. 2011;165:545–54. Scholar
  28. 91.
    Park YJ, Lee EJ, Lee YJ, Choi SH, Park JH, Lee SB, et al. Subclincal hypothyroidism (SCH) is not associated with metabolic derangement cognitive impairment depression or poor quality of life (QoL) in elderly subjects. Arch Geronto Geriatr. 2010;50:e68–73. Scholar
  29. 92.
    Ganguli M, Burmeister LA, Seaberg EC, Belle S, DeKosky ST. Association between dementia and TASH. A community based study. Biol Psychiatry. 1996;40:714–25.PubMedCrossRefGoogle Scholar
  30. 93.
    Van Osch LADM, Hogervorst E, Combrinck M, Smith AD. Low thyroid-stimulating hormone as an independent risk factor for Alzheimer’s disease. Neurology. 2004;62:1967–71.PubMedCrossRefGoogle Scholar
  31. 94.
    Kalmijn S, Mehta KM, Pols HAP, Hofman A, Drexhage HA, Breteler MM. Subclinical hyperthyroidism and the risk of dementia: the Rotterdam study. Clin Endorinol. 2000;53:733–7.CrossRefGoogle Scholar
  32. 95.
    Davis JD, Stern RA, Flashman LA. Cognitive and neuropsychiatric aspects of subclinical hypothyrpidism: significance in the elderly. Curr Psychiatry Rep. 2003;5(5):384–90.PubMedCrossRefGoogle Scholar
  33. 96.
    Pasqualetti G, Tognini S, Polini A, Caraccio N, Monzani E. Subclinical hypothydroism and heart failure in older people. Endocr Metab Immune Disord Drug Targets. 2013;13(1):13–21.PubMedCrossRefGoogle Scholar
  34. 97.
    Turner MR, Camacho X, Fischer HD, Austin PC, Anderson GM, Rochon PA, et al. Levothroxine dose and the risk of fractures in older adults: nested case –control study. BMJ. 2011;342:d2238. Scholar
  35. 98.
    Collet TH, Gussekloo J, Bauer DC, den Elzen WP, Cappola AR, Balmer P, et al. Subclinical hyperthyroidism and the risk of coronary heart disease and mortality. Arch Intern Med. 2012;172:799–809.PubMedCrossRefGoogle Scholar
  36. 99.
    Rosario PW. Natural history of subclinical hyperthyroidism in elderly patients with TSH between 0.1 and 0,.4 mIU/l: a prospective study. Clin Endocrinol. 2010;72:685–8.CrossRefGoogle Scholar

IV. Diabetes Mellitus and Cognitive Impairment

  1. 100.
    Mastro A, Caouto JB, Vagula MC. Cognitive impairment and dementia in type 2 diabetes mellitus. US Pharmacis. 2014;39:33–7.Google Scholar
  2. 101.
    Van den Berg E, Kessels RP, Kappelle LJ, de Haan EH, Biessels GJ, et al. Type 2 diabetes cognitive impairment and dementia: vascular and metabolic determinants. Drugs Today (Barc). 2006;42(11):741–54.CrossRefGoogle Scholar
  3. 102.
    Dash SK. Cognitive impairment and diabetes. Recent Pat Endocr Metab Immune Drug Discov. 2013;7(2):155–16.PubMedCrossRefGoogle Scholar
  4. 103.
    Kirkman MS, Briscoe VJ, Clark N, Florez H, Haas LB, Halter JB, et al. Diabetes in older adults: a consensus report. J Am Geriatr Soc. 2012;60:2342.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 104.
    Abbatcola AM, Maggi S, Paolisso G. New approaches to treating type2 diabetes mellitus in the elderly: role of incretin therapies. Drugs Aging. 2008;25(11):913–25.CrossRefGoogle Scholar
  6. 105.
    Abbatecola AM, Paolisso G, Sinclair AJ. Treating diabetes mellitus in older and oldest old patients. Curr Pharm Des. 2015;21(13):1665–71.PubMedCrossRefGoogle Scholar
  7. 106.
    Paolisso G. Pathophysiology of diabetes in elderly people. Acta Biomed. 2010;81(Suppl 1):47–53.PubMedPubMedCentralGoogle Scholar
  8. 107.
    Pratley RE, Gilbert M. Clinical management of the elderly patients with type 2 diabetes mellitus. Postgrad Med. 2012;124(1):133–43.PubMedCrossRefGoogle Scholar
  9. 108.
    Kawamura T. Cognitive impairment in diabetic patients: Can diabetic control prevent. Accessed 19 March 2017.
  10. 109.
    Saedi E, Gheini MR, Arami MA. Diabetes mellitus and cognitive impairments. World J Diabetes. 2016;7(17):412–22.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 110.
    Du YF, Ou HY, Beverly EA, Chiu CJ. Achieving glycaemic control in elderly patients with type 2 diabetes: a critical comparison of current options. Clin Interv Aging. 2014;
  12. 111.
    Ferrer A, Padros G, Formiga F, Pujol R. Diabetes mellitus: prevalence and effect of morbidities in the oldest old. The Octabaix study. J Am Ger Soc. 2012;60(3):462–7.CrossRefGoogle Scholar
  13. 112.
    Zhang X, Decker FH, Luo H, Geiss LS, Pearson WS, Saaddine JB, et al. Trends in the prevalence and comorbidities of diabetes mellitus in nursing home residents in the United States. 1995–2004. J Am Geriatr Soc. 2010;58:724.PubMedCrossRefGoogle Scholar
  14. 113.
    Kodl CT, Seaquist ER. Cognitive dysfunction and diabetes mellitus. Endocri Rev. 2008;29(4):494–511.CrossRefGoogle Scholar
  15. 114.
    Vijayakumar TM, Sirisha GBN, Begam MDF, Dhan MD. Mechanism linking cognitive impairment and diabetes mellitus. https://www.researchgate.nrt/publivation/231537655_Mechanism_Linking_Cognitive_Impairment_and_Diabetes_mellitus. Accessed 19 March 2017.
  16. 115.
    Whitmer RA, Karter AJ, Yaffe K, Quesenberry CP Jr, Selby JV. Hypoglycaemic episodes and risk of dementia in older patientstype 2 diabetes mellitus. JAMA. 2009;301(5):1565–72.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 116.
    Ojo O, Brooke J. Evaluating the association between diabetes cognitive impairment and dementia. Int J Environ Res Public Health. 2015;12:8281–94.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 117.
    Iglseder B. Diabetes mellitus and cognitive decline. Wirn Med Wochenschr. 2011;161(21–22):524–30.CrossRefGoogle Scholar
  19. 118.
    Clayton W, Elasy TA, Tom A. A review of the pathophysiology classification and treatment of foot ulcers in diabetic patients. Clin Diabetes. 2009;27(2):52–8.CrossRefGoogle Scholar
  20. 119.
    Koya KD, Haneda M, Nakakawa H, Isshiki K, Sato H, Maeda S, et al. Amelioration of accelerated diabetic mesangial expansion by treatment with PKC beta inhibitor in diabetic db/db mice, a rodent model of type 2 diabetes. FASEB J. 2000;3:2329–37.Google Scholar
  21. 120.
    Shukla V, Shakya AK, Perez-Pinzon MA, Dave KR. Cerebral ischaemic damage in diabetes an inflammatory perspective. J Neuroinflammation. 2017;14(1):21. Scholar
  22. 121.
    King KD, Jones JD, Warthen J. Microvascular and macrovascular complications in diabetes mellitus. Amer J Pharm Edu. 2005;69(5):Article 87.CrossRefGoogle Scholar
  23. 122.
    Warren RE, Frier BM. Hypoglycaemia and cognitive function. Diabetes Obes Metab. 2005;7(5):493–503.PubMedCrossRefGoogle Scholar
  24. 123.
    Frier BM. Hypoglycaemia and cognitive function in diabetes. Int J Clin Pract Suppl. 2001;123:30–7.Google Scholar
  25. 124.
    Rehni AK, Natiyal N, Perez-Pinzon MA, Dave KR. Hyperglycaemia/hypoglycaemia- induced mitochondrial dysfunction and cerebral ischaemic damage in diabetics. Metab Brain Dis. 2015;30(2):437–47.PubMedCrossRefGoogle Scholar
  26. 125.
    Bioemer J, Bhattacharya S, Amin R, Suppiramaniam V. Impaired insulin signaling and mechanism of memory loss. Prog Mol Biol Transl Sci. 2014;121:413–49.CrossRefGoogle Scholar
  27. 126.
    Alagiakrishnan K, Sakaralingam S, Ghosh M, Mereu L, Senior P. Antibiotic drugs and their potential role in treating mild cognitive impairment and Alzheimer’ s disease. Discovery Medicine. http://www.discovery…e-in-treating-mild-cognitive-impairment-and-alzheimers-disease
  28. 127.
    Shapakov AO, Derkach KV, Berstein LM. Brain signalling systems in the Type2 diabetes and metabolic synjdrome: promising target to treat and prevent theses diseases. Future Sci OA. 2015;1(3)
  29. 128.
    Ma L, Wang J, Li Y. Insulin resistance and cognitivedysfunction. Clin Chim Acta. 2015;444:18–23.PubMedCrossRefGoogle Scholar
  30. 129.
    de la Monte SM. Brain insulin resistance and deficiency as therapeutic targets in Alzheimer’s disease. Curr Alzheimer Res. 2012;9(1):35–66.Google Scholar
  31. 130.
    Cummings JL, Cole G. Alzheimer disease. JAMA. 2002;287(18):2335–8.PubMedCrossRefGoogle Scholar
  32. 131.
    Park S, Kim DS, Kang S, Moon NR. Bet-Amyloid-induced cognitive dysfunction impairs glucose homeostasis by increasing insulin resistance and decreasing beta-cell mass in non-diabetic and diabetic rats. Metabolism. 2013;62(2):1749–2013.PubMedCrossRefGoogle Scholar
  33. 132.
    Willette AA, Xu G, Johnson SC, Birdsill AC, Jonaitis EM, Sager MA, et al. Insulin resistance brain atrophy and cognitive performance in late middle-aged adults. Diabetes Care. 2013;36:443–9.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 133.
    Jia X, Olson DJ, Ross AR, Wu L. Structural and functional changes in human insulin induced by methylglyoxal. FASEB J. 2006;20(9):1555–7.PubMedCrossRefGoogle Scholar
  35. 134.
    Craft S, Watson GS. Insulin and neurodegenerative disease shared and specific mechanisms. Lancet Neurol. 2004;3:169–86.PubMedCrossRefGoogle Scholar
  36. 135.
    Biessels GJ, Reagan LP. Hippocampal insulin resistance and cognitive dysfunction. Nat Rev Neurosci. 2015;16:660–71.PubMedCrossRefGoogle Scholar
  37. 136.
    Gerold C, Frisoni GB, Paolissa G. Insulin resistance in cognitive impairment. The InCHANTI Study Arch Neurol. 2005;62(2):1067–72.CrossRefGoogle Scholar
  38. 137.
    Duron E, Hanon O. Vascular risk factors cognitive decline and dementia. Vasc Health Risk Manag. 2008;4(2):363–81.PubMedPubMedCentralGoogle Scholar
  39. 138.
    Duron E, Hanon O. Hypertension cognitive decline and dementia. Arch Cardiovasc Dis. 2008;101(3):181–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Sydney Medical SchoolThe University of SydneySydneyAustralia
  2. 2.Geriatric Medicine, Rehabilitation and Aged Care ServiceBlacktown-Mt Druitt HospitalBlacktownAustralia

Personalised recommendations