Stresses and Deformation in Rotating Disk During Over-Speed

  • Rajesh KumarEmail author
  • Rajeev Jain
Conference paper
Part of the Lecture Notes on Multidisciplinary Industrial Engineering book series (LNMUINEN)


Disks of rotating machineries like gas turbine engines of aircraft are subjected to very high centrifugal stresses during extreme maneuvering conditions. These disks operate in nonlinear plastic region and may grow plastically during over-speed/over-load resulting in permanent deformation. As per certification criterion, disks should have acceptable permanent growth after over-speed. A closed-form solution is developed to predict permanent residual growth in rotating disk with variable thickness for linearly strain hardening material behavior using Tresca’s yield criteria and its associated flow rule. Results obtained using analytical solutions have been compared with finite element method (FEM) and experimental tests results for uniform thickness disks


Rotating disk Permanent deformation Residual growth Tresca’s Spin test ABAQUS Finite element method (FEM) 



Young’s modulus of elasticity of disk material

\(f_{1} (\lambda ), f_{2} (\lambda )\)

Function depending on disk material properties


Disk thickness at radial location r (non-dimensional form \(\bar{h} = h/h_{0}\)) \(\bar{h}^{{\prime }} = {\text{d}}\bar{h}/{\text{d}}\bar{r}\)


Disk thickness at the bore


Profile parameter of hyperbola disk


\(H_{m} = \eta \sigma_{0} /E\)

\(K_{1} , K_{2} ,K_{3} ,K_{4}\)

Integration constant


Profile parameter of hyperbola disk


Radial location from axis of rotation (non-dimensional form \(\bar{r} = r/r_{2}\))


Disk bore radius (non-dimensional form \(\bar{r}_{1} = r_{1} /r_{2}\))


Disk rim radius (non-dimensional form \(\bar{r}_{2} = r_{2} /r_{2}\))


Elastic plastic interface radius (non-dimensional form \(\bar{r}_{\text{p}} = r_{\text{p}} /r_{2}\))


Radial displacement at r (non-dimensional form \(\bar{u} = uE/r_{2} \sigma_{0}\))


Elastic displacement (non-dimensional \(\bar{u}^{\text{e}} = u^{\text{e}} E/r_{2} \sigma_{0}\))


Plastic displacement (non-dimensional \(\bar{u}^{\text{p}} = u^{\text{e}} E/r_{2} \sigma_{0}\))

\(\varepsilon_{\theta } , \varepsilon_{\text{r}}\)

Tangential and radial strain (non-dimensional form \(\bar{\varepsilon }_{\theta } = \varepsilon_{\theta } E/\sigma_{0} ,\bar{\varepsilon }_{\text{r}} = \varepsilon_{\text{r}} E/\sigma_{0}\))


Equivalent plastic strain (non-dimensional form \(\bar{\varepsilon }_{\text{eq}} = \varepsilon_{\text{eq}} E/\sigma_{0}\))

\(\varepsilon_{\theta }^{\text{p}} ,\varepsilon_{\text{r}}^{\text{p}} ,\varepsilon_{\text{z}}^{\text{p}}\)

Plastic tangential, radial and axial strain (non-dimensional form \(\bar{\varepsilon }_{\theta }^{\text{p}} = \varepsilon_{\theta }^{\text{p}} E/\sigma_{0} ,\bar{\varepsilon }_{\text{r}}^{\text{p}} = \varepsilon_{\text{r}}^{\text{p}} E/\sigma_{0} ,\bar{\varepsilon }_{\text{z}}^{\text{p}} = \varepsilon_{\text{z}}^{\text{p}} E/\sigma_{0}\))


Hardening parameter


Constant depending on disk material properties


Poisson’s ratio




Initial yield stress


Yield stress (non-dimensional form \(\bar{\sigma }_{\text{y}} = \sigma_{\text{y}} /\sigma_{0}\))

\(\sigma_{\theta } , \sigma_{\text{r}}\)

Tangential and radial stress (normalized form \(\bar{\sigma }_{\theta } = \sigma_{\theta } /\upsigma_{0 } ,\bar{\sigma }_{\text{r}} = \sigma_{\text{r}} /\upsigma_{0}\))

\(\sigma_{\theta }^{\text{e}} , \sigma_{\text{r}}^{\text{e}}\)

Tangential and radial stresses in elastic regime

\(\sigma_{\theta }^{\text{p}} , \sigma_{\text{r}}^{\text{p}}\)

Tangential and radial stresses in plastic regime


Angular velocity in radians per second (non-dimensional form \(\Omega = \sqrt {\rho \omega^{2} r_{2}^{2} /\sigma_{0} }\))



Authors are thankful to Director, GTRE Dr. C. P. Ramanarayan, Outstanding Scientist for allowing this paper to publish in international referred journal.


  1. 1.
    Timoshenko, S., Goodier, J.N.: Theory of Elasticity. McGraw-Hill, New York (1970)zbMATHGoogle Scholar
  2. 2.
    Stodola, A.: Dampf und Gasturbinen, 6th edn. Julius Springer, Berlin (1924)Google Scholar
  3. 3.
    Reddy, T.Y., Srinath, H.: Elastic stresses in a rotating anisotropic annular disk of variable thickness and variable density. Int. J. Mech. Sci. 16, 85–89 (1974)CrossRefGoogle Scholar
  4. 4.
    Jain, R., Ramachandra, K., Simha, K.R.Y.: Rotating anisotropic disk of uniform strength. Int. J. Mech. Sci. 41, 639–648 (1999)CrossRefGoogle Scholar
  5. 5.
    Military Handbook. Department of Defence, USA: Mil-HDBK-5H (1998)Google Scholar
  6. 6.
    Chakrabarty, J.: Theory of Plasticity. McGraw-Hill, New York (1987)Google Scholar
  7. 7.
    Johnson, W., Mellor, P.B.: Engineering Plasticity. Ellis Horwood, Chichester, UK (1983)Google Scholar
  8. 8.
    Gamer, U.: Tresca’s yield condition and the rotating disk. J. Appl. Mech. 50:676–678 (1983)CrossRefGoogle Scholar
  9. 9.
    Eraslan, A.N., Argeso, H.: Limit angular velocities of variable thickness rotating disks. Int. J. Solids Struct. 39, 3109–3130 (2002)CrossRefGoogle Scholar
  10. 10.
    Ma, G., Hao, H., Miyamoto, Y.: Limiting angular velocity disc with unified yield criterion. Int. J. Mech. Sci. 43, 1137–1153 (2001)CrossRefGoogle Scholar
  11. 11.
    Güven, U.: Elastic-plastic stresses in a rotating annular disk of variable thickness and variable density. Int. J. Mech. Sci. 34, 133–138 (1992)CrossRefGoogle Scholar
  12. 12.
    Eraslan, A.N.: Elastic–plastic deformations of rotating variable thickness annular disks with free, pressurized and radially constrained boundary conditions. Int. J. Mech. Sci. 45, 643–667 (2003)CrossRefGoogle Scholar
  13. 13.
    Eraslan, A.N.: Elastoplastic deformations of rotating parabolic solid disks using Tresca’s yield criterion. Eur. J. Mech. A Solids 22, 861–874 (2003)CrossRefGoogle Scholar
  14. 14.
    Rees, D.W.A.: The Mechanics of Solids and Structures, 1st edn. McGraw-Hill, New York (1990)Google Scholar
  15. 15.
    You, L.H., Long, S.Y., Zhang, J.J.: Perturbation solution of rotating solid disks with non-linear strain hardening. Mech. Res. Commun. 24, 649–658 (1997)CrossRefGoogle Scholar
  16. 16.
    You, L.H., Zhang, J.J.: Elastic-plastic stresses in a rotating solid disk. Int. J. Mech. Sci. 41, 269–282 (1999)CrossRefGoogle Scholar
  17. 17.
    You, L.H., Tang, Y.Y., Zhang, J.J., Zhen, C.Y.: Numerical analysis of elastic-plastic rotating disks with arbitrary variable thickness and density. Int. J. Solids Struct. 37, 7809–7820 (2000)CrossRefGoogle Scholar
  18. 18.
    Bhowmick, S., Misra, D., Nath, K.: Variational formulation based analysis on growth of yield front in high speed rotating solid disks. Int. J. Eng. Sci. Technol. 2, 200–219 (2010)CrossRefGoogle Scholar
  19. 19.
    Wilterdink, P.I., Holms, A.G., Manson, S.S.: A theoretical and experimental investigation of the influence of temperature gradient on the deformation and burst speeds of rotating disks. Lewis Flight Propulsion Laboratory Cleveland, Ohio, Technical Note 2803 (1952)Google Scholar
  20. 20.
    Zienkiewicz, O.C.: The Finite Element Method in Engineering Science. McGraw-Hill, London (1971)zbMATHGoogle Scholar
  21. 21.
    Ayyappan, C., Rajesh, K., Ramesh, P., Jain, R.: Experimental and numerical studies to predict residual growth in an aero-engine compressor disk after over-speed. In: Procedia Engineering, 6th International Conference on Creep Fatigue and Creep-Fatigue Interaction, vol. 55, pp. 625–30 (2013)Google Scholar
  22. 22.
    Karlsson, H.: ABAQUS/Standard User’s Manual, vol. I & II, Version 5.4. SorensenInc. Pawtucket, Rhode Island, USA (1994)Google Scholar
  23. 23.
    Hsu, Y.C., Forman, R.G.: Elastic-plastic analysis of an infinite sheet having a circular hole under pressure. ASME J. Appl. Mech. 42, 347–352 (1975)CrossRefGoogle Scholar
  24. 24.
    Wanlin, G.: Elastic-plastic analysis of a finite sheet with a cold-worked hole. Eng. Fract. Mech. 46, 465–472 (1993)CrossRefGoogle Scholar
  25. 25.
    Callioğlu, H., Topcu, M., Tarakcilar, A.R.: Elastic-plastic stress analysis of an orthotropic rotating disc. Int. J. Mech. Sci. 48, 985–990 (2006)CrossRefGoogle Scholar
  26. 26.
    Robinson, E.L., Schenectady, N.Y.: Bursting tests of steam turbine disk wheels. Trans. ASME 66, 373–386 (1944)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Gas Turbine Research EstablishmentBangloreIndia

Personalised recommendations