Advertisement

Adjuvant Chemotherapy for HER2-Negative Early-Stage Breast Cancer

  • Leyla Ozer
  • Adnan Aydiner
Chapter

Abstract

All patients with invasive breast cancer should be evaluated for the need for adjuvant cytotoxic chemotherapy, trastuzumab, and/or endocrine therapy. When indicated, adjuvant cytotoxic chemotherapy should begin 2–8 weeks following surgery. If adjuvant endocrine (either tamoxifen or aromatase inhibitor (AI)) and cytotoxic therapy are indicated, chemotherapy should precede endocrine therapy. Older age is not a contraindication for cytotoxic chemotherapy. Lymph node positivity should not be the sole indication for adjuvant chemotherapy; however, patients with more than three involved lymph nodes, low hormone receptor positivity, HER2-positive status, triple-negative status, and a high multigene recurrence score should receive adjuvant chemotherapy.

Keywords

Adjuvant Chemotherapy Predictive factors Prognostic factors Early stage Pregnancy Gene signature Multi-gene signature TAILORx Tumor-infiltrating lymphocytes Intrinsic subtypes Genomic tests 

References

  1. 1.
    Berry DA, Cronin KA, Plevritis SK, Fryback DG, Clarke L, Zelen M, Cancer Intervention and Surveillance Modeling Network (CISNET) Collaborators, et al. Effect of screening and adjuvant therapy on mortality from breast cancer. N Engl J Med. 2005;353:1784–92.CrossRefGoogle Scholar
  2. 2.
    Clarke M. Meta-analyses of adjuvant therapies for women with early breast cancer: the Early Breast Cancer Trialists’ Collaborative Group overview. Ann Oncol. 2006;17(Suppl 10):x59–62.CrossRefGoogle Scholar
  3. 3.
    Denduluri N, Chavez-MacGregor M, Telli ML, Eisen A, Graff SL, Hassett MJ, et al. Selection of optimal adjuvant chemotherapy and targeted therapy for early breast cancer: ASCO clinical practice guideline focused update. J Clin Oncol. 2018;36.  https://doi.org/10.1200/JCO.2018.78.8604.CrossRefGoogle Scholar
  4. 4.
    van der Hage JA, Mieog JS, van de Velde CJ, et al. Impact of established prognostic factors and molecular subtype in very young breast cancer patients: pooled analysis of four EORTC randomized controlled trials. Breast Cancer Res. 2011;13:R68.CrossRefGoogle Scholar
  5. 5.
    Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;365:1687–717.CrossRefGoogle Scholar
  6. 6.
    Li CI, Uribe DJ, Daling JR. Clinical characteristics of different histologic types of breast cancer. Br J Cancer. 2005;93:1046.CrossRefGoogle Scholar
  7. 7.
    Denkert C, Loibl S, Noske A, Roller M, Müller BM, Komor M, et al. Tumor associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol. 2010;28:105–13.CrossRefGoogle Scholar
  8. 8.
    Loi S, Sirtaine N, Piette F, Salgado R, Viale G, Van Eenoo F, et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol. 2013;31:860–7.CrossRefGoogle Scholar
  9. 9.
    Adams S, Gray RJ, Demaria S, Goldstein L, Perez EA, Shulman LN, et al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol. 2014;32:2959–66.CrossRefGoogle Scholar
  10. 10.
    Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 2010;12:R68.CrossRefGoogle Scholar
  11. 11.
    Perou CM, Sørlie T, Elsen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52.CrossRefGoogle Scholar
  12. 12.
    Sørlie T. Molecular portraits of breast cancer: tumour subtypes as distinct disease entities. Eur J Cancer. 2004;40:2667–75.CrossRefGoogle Scholar
  13. 13.
    Bullwinkel J, Baron-Luhr B, Ludemann A, Wohlenberg C, Gerdes J, Scholzen T. Ki67 protein is associated with ribosomal RNA transcription in quiescent and proliferating cells. J Cell Physiol. 2006;206:624–35.CrossRefGoogle Scholar
  14. 14.
    Urruticoechea A, Smith IE, Dowsett M. Proliferation marker Ki67 in early breast cancer. J Clin Oncol. 2005;23(28):7212–20.CrossRefGoogle Scholar
  15. 15.
    Polley MY, Leung SC, McShane LM, Gao D, Hugh JC, Mastropasqua MG, et al. An international Ki67 reproducibility study. J Natl Cancer Inst. 2013;105:1897–906.CrossRefGoogle Scholar
  16. 16.
    Cheang MC, Chia SK, Voduc D, Gao D, Leung S, Snider J, et al. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst. 2009;101(10):736e50.CrossRefGoogle Scholar
  17. 17.
    Coates AS, Winer EP, Goldhirsch A, Gelber RD, Gnant M, Piccart-Gebhart M, Thürlimann B, Senn HJ, Panel Members. Tailoring therapies-improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015. Ann Oncol. 2015;26(8):1533–46.CrossRefGoogle Scholar
  18. 18.
    Polley MY, Leung SC, Gao D, Mastropasqua MG, Zabaglo LA, Bartlett JM, et al. An international study to increase concordance in Ki67 scoring. Mod Pathol. 2015;28:778–86.CrossRefGoogle Scholar
  19. 19.
    Prat A, Cheang MC, Martin M, Parker JS, Carrasco E, Caballero R, et al. Prognostic significance of progesterone receptor positive tumor cells within immunohistochemically defined luminal A breast cancer. J Clin Oncol. 2013;31:203–9.CrossRefGoogle Scholar
  20. 20.
    Cancello G, Maisonneuve P, Rotmensz N, Viale G, Mastropasqua MG, Pruneri G, et al. Progesterone receptor loss identifies Luminal B breast cancer subgroups at higher risk of relapse. Ann Oncol. 2013;24(3):661e8.CrossRefGoogle Scholar
  21. 21.
    Loi S, Haibe-Kains B, Desmedt C, Lallemand F, Tutt AM, Gillet C, et al. Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade. J Clin Oncol. 2007;25:1239–46.CrossRefGoogle Scholar
  22. 22.
    Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A. 2003;100(14):8418–23.CrossRefGoogle Scholar
  23. 23.
    Perou CM, Jeffrey SS, van de Rijn M, Rees CA, Eisen MB, Ross DT, et al. Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc Natl Acad Sci U S A. 1999;96:9212–7.CrossRefGoogle Scholar
  24. 24.
    Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98:10869–74.CrossRefGoogle Scholar
  25. 25.
    van de Vijver MJ, He YD, van ’t Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347:1999–2009.CrossRefGoogle Scholar
  26. 26.
    Cardoso F, van’t Veer LJ, Bogaerts J, Slaets L, Viale G, Delaloge S, MINDACT Investigators, et al. 70-gene signature as an aid to treatment decisions in early-stage breast cancer. N Engl J Med. 2016;375:717–29.CrossRefGoogle Scholar
  27. 27.
    Krop I, Ismailia N, Andre F, Bast RC, Barlow W, Collyar DE, et al. Use of biomarkers to guide decisions on adjuvant systemic therapy for women with early-stage invasive breast cancer: American Society of Clinical Oncology clinical practice guideline focused update. J Clin Oncol. 2017;35:2838–47.CrossRefGoogle Scholar
  28. 28.
    Sparano JA, Gray RJ, Makover DF, Pritchard KI, Albain KS, et al. Prospective validation of a 21-gene expression assay in breast cancer. N Engl J Med. 2015;373:2005–14.CrossRefGoogle Scholar
  29. 29.
    Filipits M, Rudas M, Jakesz R, Dubsky P, Fitzal F, Singer CF, et al. A new molecular predictor of distant recurrence in ER-positive, HER2-negative breast cancer adds independent information to conventional clinical risk actors. Clin Cancer Res. 2011;17(18):6012–20.CrossRefGoogle Scholar
  30. 30.
    Dubsky P, Filipits M, Jakesz R, Rudas M, Singer CF, Greil R, et al. EndoPredict improves the prognostic classification derived from common clinical guidelines in ER-positive, HER2-negative early breast cancer. Ann Oncol. 2013;24:640–7.CrossRefGoogle Scholar
  31. 31.
    Curigliano G, Burstein HJ, Winer EP, Gnant M, Dubsky P, Loibl S, et al. De-escalating and escalating treatments for early-stage breast cancer: the St. Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer 2017. Ann Oncol. 2017;28:1700–12.CrossRefGoogle Scholar
  32. 32.
    Thurman SA, Schnitt SJ, Connolly JL, Gelman R, Silver B, Harris JR, et al. Outcome after breast-conserving therapy for patients with stage I or II mucinous, medullary, or tubular breast carcinoma. Int J Radiat Oncol Biol Phys. 2004;59:152.CrossRefGoogle Scholar
  33. 33.
    Capella C, Eusebi V, Mann B, Azzopardi JG. Endocrine differentiation in mucoid carcinoma of the breast. Histopathology. 1980;4:613–30.CrossRefGoogle Scholar
  34. 34.
    Clayton F. Pure mucinous carcinomas of breast: morphologic features and prognostic correlates. Hum Pathol. 1986;17:34–8.CrossRefGoogle Scholar
  35. 35.
    Tan PH, Tse GMK, Bay BH. Mucinous breast lesions: diagnostic challenges. J Clin Pathol. 2008;61:11–9.CrossRefGoogle Scholar
  36. 36.
    Di Saverio S, Gutierrez J, Avisar E. A retrospective review with long term follow-up of 11,400 cases of pure mucinous breast carcinoma. Breast Cancer Res Treat. 2008;111:541–54.CrossRefGoogle Scholar
  37. 37.
    Vu-Nishino H, Tavassoli FA, Ahrens WA, Haffty BG. Clinicopathologic features and long-term outcome of patients with medullary breast carcinoma managed with breast-conserving therapy (BCT). Int J Radiat Oncol Biol Phys. 2005;62:1040–7.CrossRefGoogle Scholar
  38. 38.
    Thompson K, Grabowski J, Saltzstein SL, Sadler GR, Blair SL. Adenoid cystic breast carcinoma: is axillary staging necessary in all cases? Results from the California Cancer Registry. Breast J. 2011;17:485–9.CrossRefGoogle Scholar
  39. 39.
    Ghabach B, Anderson WF, Curtis RE, Huycke MM, Lavigne JA, Dores GM. Adenoid cystic carcinoma of the breast in the United States (1977 to 2006): a population-based cohort study. Breast Cancer Res. 2010;12:R54.CrossRefGoogle Scholar
  40. 40.
    Ozguroglu M, Tascilar K, Ilvan S, Soybir G, Celik V. Secretory carcinoma of the breast: case report and review of the literature. Oncology. 2005;68:263–8.CrossRefGoogle Scholar
  41. 41.
    Vieni S, Cabibi D, Cipolla C, Fricano S, Graceffa G, Latteri MA. Secretory breast carcinoma with metastatic sentinel lymph node. World J Surg Oncol. 2006;4:88.CrossRefGoogle Scholar
  42. 42.
    Herz H, Cooke B, Goldstein D. Metastatic secretory breast cancer. Non-responsiveness to chemotherapy: case report and review of the literature. Ann Oncol. 2000;11:1343–7.CrossRefGoogle Scholar
  43. 43.
    Arpino G, Clark GM, Mohsin S, Bardou VJ, Elledge RM. Adenoid cystic carcinoma of the breast: molecular markers, treatment, and clinical outcome. Cancer. 2002;94:2119–27.CrossRefGoogle Scholar
  44. 44.
    Aydiner A, Sen F, Tambas M, Ciftci R, Eralp Y, Saip P, Karanlik H, et al. Metaplastic breast carcinoma versus triple-negative breast cancer: survival and response to treatment. Medicine (Baltimore). 2015;94(52):e2341.CrossRefGoogle Scholar
  45. 45.
    Tse GM, Tan PH, Putti TC, Lui PC, Chaiwun B, Law BK. Metaplastic carcinoma of the breast: a clinicopathological review. J Clin Pathol. 2006;59:1079–83.CrossRefGoogle Scholar
  46. 46.
    Chen IC, Lin CH, Huang CS, Lien HC, Hsu C, Kuo WH, et al. Lack of efficacy to systemic chemotherapy for treatment of metaplastic carcinoma of the breast in the modern era. Breast Cancer Res Treat. 2011;130:345–51.CrossRefGoogle Scholar
  47. 47.
    Gagliato Dde M, Gonzalez-Angulo AM, Lei X, Theriault RL, Giordano SH, Valero V, et al. Clinical impact of delaying initiation of adjuvant chemotherapy in patients with breast cancer. J Clin Oncol. 2014;32:735–44.CrossRefGoogle Scholar
  48. 48.
    Early Breast Cancer Trialists’ Collaborative Group (EBCTCG), Peto R, Davies C, Godwin J, Gray R, Pan HC, et al. Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet. 2012;379:432–44.CrossRefGoogle Scholar
  49. 49.
    Fisher B, Brown AM, Dimitrov NV, Poisson R, Redmond C, Margolese RG, et al. Two months of doxorubicin-cyclophosphamide with and without interval reinduction therapy compared with 6 months of cyclophosphamide, methotrexate, and fluorouracil in positive-node breast cancer patients with tamoxifen-nonresponsive tumors: results from the National Surgical Adjuvant Breast and Bowel Project B-15. J Clin Oncol. 1990;8:1483–96.CrossRefGoogle Scholar
  50. 50.
    Fisher B, Anderson S, Tan-Chiu E, Wolmark N, Wickerham DL, Fisher ER, et al. Tamoxifen and chemotherapy for axillary nodenegative, estrogen receptor-negative breast cancer: findings from National Surgical Adjuvant Breast and Bowel Project B-23. J Clin Oncol. 2001;19:931–42.CrossRefGoogle Scholar
  51. 51.
    Levine M, Pritchard K, Bramwell V, Shepherd LE, Tu D, Paul N, et al. Randomized trial comparing cyclophosphamide, epirubicin, and fluorouracil with cyclophosphamide, methotrexate, and fluorouracil in premenopausal women with node-positive breast cancer: update of National Cancer Institute of Canada Clinical Trials Group Trial MA5. J Clin Oncol. 2005;23:5166–70.CrossRefGoogle Scholar
  52. 52.
    Henderson I, Berry D, Demetri G, Cirrincione CT, Goldstein LJ, Martino S, et al. Improved outcomes from adding sequential Paclitaxel but not from escalating Doxorubicin dose in an adjuvant chemotherapy regimen for patients with node-positive primary breast cancer. J Clin Oncol. 2003;21:976–83.CrossRefGoogle Scholar
  53. 53.
    Mamounas E, Bryant J, Lembersky B, Fehrenbacher L, Sedlacek SM, Fisher B, et al. Paclitaxel after doxorubicin plus cyclophosphamide as adjuvant chemotherapy for node-positive breast cancer: results from NSABP B-28. J Clin Oncol. 2005;23:3686–96.CrossRefGoogle Scholar
  54. 54.
    Buzdar AU, Singletary SE, Valero V, Booser DJ, Ibrahim NK, Rahman Z, et al. Evaluation of paclitaxel in adjuvant chemotherapy for patients with operable breast cancer: preliminary data of a prospective randomized trial. Clin Cancer Res. 2002;8:1073–9.PubMedGoogle Scholar
  55. 55.
    Martín M, Seguí MA, Antón A, Ruiz A, Ramos M, Adrover E, et al. Adjuvant docetaxel for high-risk, node-negative breast cancer. N Engl J Med. 2010;363:2200–10.CrossRefGoogle Scholar
  56. 56.
    De Laurentiis M, Cancello G, D’Agostino D, Giuliano M, Giordano A, Montagna E, et al. Taxane-based combinations as adjuvant chemotherapy of early breast cancer: a meta-analysis of randomized trials. J Clin Oncol. 2008;26:44–53.CrossRefGoogle Scholar
  57. 57.
    Jacquin JP, Jones S, Magné N, Chapelle C, Ellis P, Janni W, et al. Docetaxel containing adjuvant chemotherapy in patients with early stage breast cancer. Consistency of effect independent of nodal and biomarker status: a meta-analysis of 14 randomized clinical trials. Breast Cancer Res Treat. 2012;134:903–13.CrossRefGoogle Scholar
  58. 58.
    Jones S, Holmes FA, O’Shaughnessy J, Blum JL, Vukelja SJ, McIntyre KJ, et al. Docetaxel with cyclophosphamide is associated with an overall survival benefit compared with doxorubicin and cyclophosphamide: 7-year follow-up of US Oncology Research Trial 9735. J Clin Oncol. 2009;27:1178–83.Google Scholar
  59. 59.
    Blum JL, Flynn PJ, Yothers G, Asmar L, Geyer CE Jr, Jacobs SA, et al. Anthracyclines in early breast cancer: the ABC Trials-USOR 06-090, NSABP B-46-I/USOR 07132, and NSABP B-49 (NRG Oncology). J Clin Oncol. 2017;35:2647–55.CrossRefGoogle Scholar
  60. 60.
    Skipper HE. Laboratory models: some historical perspectives. Cancer Treat Rep. 1986;70:3–7.PubMedGoogle Scholar
  61. 61.
    Citron ML, Berry DA, Cirrincione C, Hudis C, Winer EP, Gradishar WJ, et al. Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741. J Clin Oncol. 2003;21:1431–9.CrossRefGoogle Scholar
  62. 62.
    Budd GT, Barlow WE, Moore HC, Hobday TJ, Stewart JA, Isaacs C, et al. SWOG S0221: a phase III trial comparing chemotherapy schedules in high-risk early-stage breast cancer. J Clin Oncol. 2015;33:58–64.CrossRefGoogle Scholar
  63. 63.
    Therasse P, Mauriac L, Welnicka-Jaskiewicz M, Bruning P, Cufer T, Bonnefoi H, et al. Final results of a randomized phase III trial comparing cyclophosphamide, epirubicin, and fluorouracil with dose-intensified epirubicin and cyclophosphamide plus filgrastim in locally advanced breast cancer. An EORTC-NCIC-SAKK multicenter study. J Clin Oncol. 2003;21:843–50.CrossRefGoogle Scholar
  64. 64.
    Fountzilas G, Dafni U, Gogas H, Linardou H, Kalofonos HP, Briasoulis E, et al. Post-operative dose dense sequential chemotherapy with epirubicin, paclitaxel and CMF in patients with high-risk breast cancer: a Hellenic Cooperative Oncology Group randomized phase III trial HE 10/00. Ann Oncol. 2008;19:853–60.CrossRefGoogle Scholar
  65. 65.
    Del Mastro L, De Placido S, Bruzzi P, De Laurentiis M, Boni C, Cavazzini G, Gruppo Italiano Mammella (GIM) Investigators, et al. Fluorouracil and dose-dense chemotherapy in adjuvant treatment of patients with early-stage breast cancer: an open-label, 2 × 2 factorial, randomised phase 3 trial. Lancet. 2015;385(9980):1863–72.CrossRefGoogle Scholar
  66. 66.
    Bonilla L, Ben-Aharon I, Vidal L, Gafter-Gvili A, Leibovici L, Stemmer SM, et al. Dose-dense chemotherapy in nonmetastatic breast cancer: a systematic review and meta-analysis of randomized controlled trials. J Natl Cancer Inst. 2010;102:1845–54.CrossRefGoogle Scholar
  67. 67.
    Bayraktar S, Arun B. Dose dense chemotherapy for breast cancer. Breast J. 2012;18:261–6.CrossRefGoogle Scholar
  68. 68.
    Joensuu H, Kellokumpu-Lehtinen PL, Huovinen R, Jukkola-Vuorinen A, Tanner M, Asola R, et al. Adjuvant capecitabine in combination with docetaxel and cyclophosphamide plus epirubicin for breast cancer: an open-label, randomised controlled trial. Lancet Oncol. 2009;10:1145–51.CrossRefGoogle Scholar
  69. 69.
    Joensuu H, Kellokumpu-Lehtinen PL, Huovinen R, Jukkola-Vuorinen A, Tanner M, Kokko R, et al. Adjuvant capecitabine in combination with docetaxel, epirubicin, and cyclophosphamide for early breast cancer: the randomized clinical FinXX trial. JAMA Oncol. 2017;3(6):793–800.CrossRefGoogle Scholar
  70. 70.
    O’Shaughnessy J, Paul D, Stokoe C. First efficacy results of a randomized, open-label, phase II study of adjuvant doxorubicin plus cyclophosphamide, followed by docetaxel with or without capecitabine, in high-risk early breast cancer. In: 33rd annual san antonio breast cancer symposium 2010, San Antonio, TX, December 8-12 (abstr S4-2).Google Scholar
  71. 71.
    Masuda N, Lee SJ, Ohtani S, Im YH, Lee ES, Yokota I, et al. Adjuvant capecitabine for breast cancer after preoperative chemotherapy. N Engl J Med. 2017;376(22):2147–59.CrossRefGoogle Scholar
  72. 72.
    Husain A, He G, Venkatraman ES, Spriggs DR. BRCA1 up-regulation is associated with repair-mediated resistance to cis-diamminedichloroplatinum(II). Cancer Res. 1998;58:1120–3.PubMedGoogle Scholar
  73. 73.
    Byrski T, Gronwald J, Huzarski T, Grzybowska E, Budryk M, Stawicka M, et al. Response to neo-adjuvant chemotherapy in women with BRCA1-positive breast cancers. Breast Cancer Res Treat. 2009;115:359–63.CrossRefGoogle Scholar
  74. 74.
    Silver DP, Richardson AL, Eklund AC, Wang ZC, Szallasi Z, Li Q, et al. Efficacy of neoadjuvant cisplatin in triple-negative breast cancer. J Clin Oncol. 2010;28:1145–53.CrossRefGoogle Scholar
  75. 75.
    Bell R, Brown J, Parmar M, Toi M, Suter T, Steger GG, et al. Final efficacy and updated safety results of the randomized phase III BEATRICE trial evaluating adjuvant bevacizumab-containing therapy in triple-negative early breast cancer. Ann Oncol. 2016;28(4):754–60.Google Scholar
  76. 76.
    Parente JT, Amsel M, Lerner R, Chinea F. Breast cancer associated with pregnancy. Obstet Gynecol. 1998;71:861–4.Google Scholar
  77. 77.
    Ring AE, Smith IE, Jones A, Shannon C, Galani E, Ellis PA. Chemotherapy for breast cancer during pregnancy: an 18-year experience from five London teaching hospitals. J Clin Oncol. 2005;23:4192–7.CrossRefGoogle Scholar
  78. 78.
    Germann N, Goffinet F, Goldwasser F. Anthracyclines during pregnancy: embryo-fetal outcome in 160 patients. Ann Oncol. 2004;15:146–50.CrossRefGoogle Scholar
  79. 79.
    Hahn KM, Johnson PH, Gordon N, Kuerer H, Middleton L, Ramirez M, et al. Treatment of pregnant breast cancer patients and outcomes of children exposed to chemotherapy in utero. Cancer. 2006;107(6):1219–26.CrossRefGoogle Scholar
  80. 80.
    Marquardt H, Philips FS, Sternberg SS. Tumorigenicity in vivo and induction of malignant transformation and mutagenesis in cell cultures by adriamycin and daunomycin. Cancer Res. 1976;36:2065–9.PubMedGoogle Scholar
  81. 81.
    Murthy RK, Theriault RL, Barnett CM, Hodge S, Ramirez MM, Milbourne A, et al. Outcomes of children exposed in utero to chemotherapy for breast cancer. Breast Cancer Res. 2014;16(6):500.CrossRefGoogle Scholar
  82. 82.
    Briggs GG, Freeman RK, Yaffe SJ. Drugs in pregnancy and lactation. 8th ed. Philadelphia: Lippincott Williams & Wilkins; 2008.Google Scholar
  83. 83.
    Mir O, Berveiller P, Goffinet F, Treluyer JM, Serreau R, Goldwasser F, et al. Taxanes for breast cancer during pregnancy: a systematic review. Ann Oncol. 2010;21:425–6.CrossRefGoogle Scholar
  84. 84.
    Garcia-Gonzalez J, Cueva J, Lamas MJ, Curiel T, Graña B, López-López R. Paclitaxel and cisplatin in the treatment of metastatic non-small-cell lung cancer during pregnancy. Clin Transl Oncol. 2008;10:375–6.CrossRefGoogle Scholar
  85. 85.
    Bader AA, Schlembach D, Tamussino KF, Pristauz G, Petru E. Anhydramnios associated withadministration of trastuzumab and paclitaxel for metastatic breast cancer during pregnancy. Lancet Oncol. 2007;8:79–81.CrossRefGoogle Scholar
  86. 86.
    Amant F, Deckers S, Van Calsteren K, Loibl S, Halaska M, Brepoels L, et al. Breast cancer in pregnancy: recommendations of an international consensus meeting. Eur J Cancer. 2010;46:3158–68.CrossRefGoogle Scholar
  87. 87.
    Ferlay J, Héry C, Autier P, Sankaranarayanan R. Global burden of breast cancer. In: Li C, editor. Breast cancer epidemiology. New York: Springer; 2010. p. 1–19.Google Scholar
  88. 88.
    Menna P, Gonzalez Paz O, Chello M, Covino E, Salvatorelli E, Minotti G. Anthracycline cardiotoxicity. Expert Opin Drug Saf. 2012;11:21–36.CrossRefGoogle Scholar
  89. 89.
    Roca-Alonso L, Pellegrino L, Castellano L, Stebbing J. Breast cancer treatment and adverse cardiac events: what are the molecular mechanisms. Cardiology. 2012;122:253–9.CrossRefGoogle Scholar
  90. 90.
    Maxwell CB, Jenkins AT. Drug-induced heart failure. Am J Health Syst Pharm. 2011;68:1791–804.CrossRefGoogle Scholar
  91. 91.
    Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer. 2003;97:2869–79.CrossRefGoogle Scholar
  92. 92.
    Gharib MI, Burnett AK. Chemotherapy-induced cardiotoxicity: current practice and prospects of prophylaxis. Eur J Heart Fail. 2002;4:235–42.CrossRefGoogle Scholar
  93. 93.
    Smith RE, Bryant J, DeCillis A, Anderson S. Acute myeloid leukemia and myelodysplastic syndrome after doxorubicin-cyclophosphamide adjuvant therapy for operable breast cancer: the National Surgical Adjuvant Breast and Bowel Project Experience. J Clin Oncol. 2003;21:1195–204.CrossRefGoogle Scholar
  94. 94.
    Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114:937–51.CrossRefGoogle Scholar
  95. 95.
    Wolff AC, Blackford AL, Visvanathan K, Rugo HS, Moy B, Goldstein LJ, et al. Risk of marrow neoplasms after adjuvant breast cancer therapy: the national comprehensive cancer network experience. J Clin Oncol. 2015;33:340–8.CrossRefGoogle Scholar
  96. 96.
    Eckhoff L, Knoop A, Jensen MB, Ewertz M. Persistence of docetaxel-induced neuropathy and impact on quality of life among breast cancer survivors. Eur J Cancer. 2015;51:292–300.CrossRefGoogle Scholar
  97. 97.
    Hershman DL, Lacchetti C, Dworkin RH, Lavoie Smith EM, Bleeker J, Cavaletti G, et al. Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2014;32(18):1941–67.CrossRefGoogle Scholar
  98. 98.
    Smith EM, Pang H, Cirrincione C, Fleishman S, Paskett ED, Ahles T. Effect of duloxetine on pain, function, and quality of life among patients with chemotherapy-induced painful peripheral neuropathy: a randomized clinical trial. JAMA. 2013;309:1359–67.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Leyla Ozer
    • 1
  • Adnan Aydiner
    • 2
  1. 1.Internal Medicine, Department of Medical OncologyMehmet Ali Aydinlar University HospitalIstanbulTurkey
  2. 2.Internal Medicine, Medical Oncology, Istanbul Medical Faculty, Department of Medical Oncology, Institute of OncologyIstanbul UniversityIstanbulTurkey

Personalised recommendations