Advertisement

Mesoscopic Modelling of Strain Glass

  • P. LloverasEmail author
  • T. Castán
  • M. Porta
  • A. Saxena
  • A. Planes
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 275)

Abstract

Glassiness is ubiquitous in nature but it still keeps many fascinating phenomena hidden. The discovery about a decade ago of glassy behavior in strain nanoclusters (the strain glass) has extended ferroic glasses to include the ferroelastic property. Here, by means of numerical modelling and comparison with experimental data in the literature, we identify disorder and anisotropy as key parameters whose interplay determines the ferroelastic behavior in alloys: While anisotropy-driven systems exhibit a normal ferroelastic transition, disorder-driven systems may result in the strain glass state. Interestingly, strain glass preserves functional properties such as the shape memory effect (SME) and superelasticity. Moreover, it exhibits hysteresis reduction and widening of operational temperature-stress range, which enhances its technological appeal. Precisely based on the occurrence of the SME, the relevance of geometrical frustration in strain glass is called into question as it might play a minor role in the freezing process. In magnetostructural systems, the multiferroic coupling could yield strain-mediated magnetic glass.

Notes

Acknowledgements

We acknowledge Prof. David Sherrington for fruitful discussions. This work was supported by CICyT (Spain) project MAT2013-40590-P, by DGU (Catalonia) project 2014SGR00581 and by the U.S. Department of Energy.

References

  1. 1.
    I. Gutzow, J. Schmelzer, The Vitreous State. Thermodynamics, Structure, Rheology and Crystallization (Springer, Berlin, 1995)Google Scholar
  2. 2.
    The difference between metastable relaxation and glassy dynamics may be so small that eventually cannot be distinguished. Therefore, glass has been described somewhere as metastable quasiequilibrium states. See, for instance: T. Loerting, V.V. Brazhkin, T. Morishita, in Multiple Amorphous-Amorphous Transitions, ed. by S. Rice. Advances in Chemical Physics, vol. 143 (Wiley, Hoboken, 2009), pp. 29–83Google Scholar
  3. 3.
    J.M.D. Coey, P.W. Readman, Nature 246, 476–478 (1973)ADSCrossRefGoogle Scholar
  4. 4.
    C. Dekker, W. Eidelloth, R.H. Koch, Phys. Rev. Lett. 68, 3347–3350 (1992)ADSCrossRefGoogle Scholar
  5. 5.
    D. Viehland, J.F. Li, S.J. Jang, L.E. Cross, M. Wuttig, Phys. Rev. B 46, 8013–8017 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    R. Fichtl et al., Phys. Rev. Lett. 94, 027601 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    P.G. Wolynes, V. Lubchenko, Structural Glasses and Supercooled Liquids: Theory, Experiment, and Applications (Wiley, New Jersey, 2012)CrossRefGoogle Scholar
  8. 8.
    D.L. Stein, Spin Glasses: Still Complex After All These Years?, in Decoherence and Entropy in Complex Systems, ed. by T. Elze (Springer, Berlin, 2004)Google Scholar
  9. 9.
    S.H. Chen, H. Shi, B.M. Conger, J.C. Mastrangelo, T. Tsutsui, Adv. Mater. 8, 998–1001 (1996)CrossRefGoogle Scholar
  10. 10.
    S.H. Chen, D. Katsis, A.W. Schmid, J.C. Mastrangelo, T. Tsutsui, T.N. Blanton, Nat. Lett. 397, 506–508 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    R. Brand, P. Lunkenheimer, A. Loidl, J. Chem. Phys. 116, 10386–10401 (2002)Google Scholar
  12. 12.
    C.T. Moynihan, A.J. Easteal, J. Wilder, J. Tucker, J. Phys. Chem. 78, 2673–2677 (1974)Google Scholar
  13. 13.
    R. Moessner, A.P. Ramirez, Phys. Today 59, 24–29 (2006)CrossRefGoogle Scholar
  14. 14.
    M. Fujihala et al., Phys. Rev. B 85, 012402 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    M. Schmidt et al., Phys. A 438, 416–423 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    J.S. Gardner, M.J.P. Gingras, J.E. Greedan, Rev. Mod. Phys. 82, 53–107 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    R.F. Wang et al., Nat. Lett. 439, 303–306 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    F. Yen et al., Phys. B 403, 1487–1489 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    P.G. Debenedetti, F.H. Stillinger, Nature 410, 259–267 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    L.C. Pardo, A. Henao, A. Vispa, J. Non-Cryst. Sol. 407, 220–227 (2015)Google Scholar
  21. 21.
    R.N. Bhowmik et al., Phys. Rev. B. 72, 094405 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    H.Y. Kwon et al., J. Magn. Magn. Mat. 324, 2171–2176 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    R.P. Erickson, D.L. Mills, Phys. Rev. B 43, 11527(R) (1991)ADSCrossRefGoogle Scholar
  24. 24.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759–765 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    M. Porta, T. Castán, P. Lloveras, T. Lookman, A. Saxena, S.R. Shenoy, Phys. Rev. B 79, 214117 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    K. Battacharya, Microstructure of martensite: Why it forms and how it gives rise to the shape-memory effect. Oxford Series on Materials Modelling (Oxford University Press, Oxford, 2004)Google Scholar
  27. 27.
    S. Kaufmann et al., New J. Phys. 13, 053029 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    A.G. Khachaturyan, Domain structure in martensitic transformation, in Proceedings of Advanced Materials’93, ed. by K. Otsuka et al. (1994); published in Trans. Mat. Res. Soc. Jpn. 18B, 799 (1994)Google Scholar
  29. 29.
    S. Kustov, D. Salas, E. Cesari, R. Santamarta, D. Mari, J. Van Humbeeck, Mat. Sci. Forum 738–739, 274–275 (2013)CrossRefGoogle Scholar
  30. 30.
    S. Kustov, D. Salas, E. Cesari, R. Santamarta, D. Mari, J. Van Humbeeck, Acta Mater. 73, 275–286 (2014)CrossRefGoogle Scholar
  31. 31.
    N. Shankaraiah, K.P.N. Murthy, T. Lookman, S.R. Shenoy, Phys. Rev. B 84, 064119 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    A. Millis, Solid State Commun. 126, 3–8 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    Y. Imry, M. Wortis, Phys. Rev. B 19, 3580–3585 (1979)ADSCrossRefGoogle Scholar
  34. 34.
    Y. Nii et al., Phys. Rev. B 82, 214104 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    E.K.H. Salje, Phase Transitions in Ferroelastic and Co-elastic Crystals (Cambridge University Press, Cambridge, 1990)Google Scholar
  36. 36.
    Y. Murakami, H. Shibuya, D. Shindo, J. Microsc. 203, 22–33 (2001)MathSciNetCrossRefGoogle Scholar
  37. 37.
    S. Kartha, T. Castán, J.A. Krumhansl, J.P. Sethna, Phys. Rev. Lett. 67, 3630–3633 (1991)ADSCrossRefGoogle Scholar
  38. 38.
    X. Ren et al., Philos. Mag. 90, 141–157 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    C. Paduani, A. Migliavacca, M.L. Sebben, J.D. Ardisson, M.I. Yoshida, S. Soriano, M. Kalisz, Solid State Commun. 141, 145–149 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    W. Ratcliff II et al., Phys. Rev. B 65, 220406(R) (2002)Google Scholar
  41. 41.
    T. Chakrabarty, A.V. Mahajan, S. Kundu, J. Phys. Condens. Matter 26, 405601 (2014)CrossRefGoogle Scholar
  42. 42.
    J.L. Dormann, M. Nogues, J. Phys. Condens. Matter 2, 1223–1237 (1990)ADSCrossRefGoogle Scholar
  43. 43.
    M. Nogues et al., J. Magn. Magn. Mater. 104–107, 1641–1642 (1992)ADSCrossRefGoogle Scholar
  44. 44.
    J. Blasco, V. Cuartero, J. García, J.A. Rodríguez-Velamazán, J. Phys. Condens. Matter 24, 076006 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    S. Karmakar et al., Phys. Rev. B 74, 104407 (2006)ADSCrossRefGoogle Scholar
  46. 46.
    C. Ang, Z. Yu, Z. Jing, Phys. Rev. B 61, 957–961 (2000)ADSCrossRefGoogle Scholar
  47. 47.
    P.A. Sharma, S.B. Kim, T.Y. Koo, S. Guha, S.-W. Cheong, Phys. Rev. B 71, 224416 (2005)ADSCrossRefGoogle Scholar
  48. 48.
    P. Toledano, D. Machon, Phys. Rev. B 71, 024210 (2005)ADSCrossRefGoogle Scholar
  49. 49.
    S. Sarkar, X. Ren, K. Otsuka, Phys. Rev. Lett. 95, 205702 (2005)ADSCrossRefGoogle Scholar
  50. 50.
    Y. Wang, X. Ren, K. Otsuka, Phys. Rev. Lett. 97, 225703 (2006)ADSCrossRefGoogle Scholar
  51. 51.
    X. Ren, Y. Wang, K. Otsuka, P. Lloveras, T. Castán, M. Porta, A. Planes, A. Saxena, MRS Bull. 34, 838–846 (2009)CrossRefGoogle Scholar
  52. 52.
    Y. Zhou et al., Appl. Phys. Lett. 95, 151906 (2009)ADSCrossRefGoogle Scholar
  53. 53.
    Y. Zhou et al., Acta Mater. 58, 5433–5442 (2010)CrossRefGoogle Scholar
  54. 54.
    J. Zhang et al., Phys. Rev. B 84, 214201 (2011)ADSCrossRefGoogle Scholar
  55. 55.
    D.P. Wang et al., Europhys. Lett. 98, 46004 (2012)ADSCrossRefGoogle Scholar
  56. 56.
    Y. Yao et al., Europhys. Lett. 100, 17004 (2012)CrossRefGoogle Scholar
  57. 57.
    Y. Wang et al., Appl. Phys. Lett. 102, 141909 (2013)ADSCrossRefGoogle Scholar
  58. 58.
    Y. Wang et al., Sci. Rep. 4, 3995 (2014)CrossRefGoogle Scholar
  59. 59.
    Y. Zhou et al., Phys. Rev. Lett. 112, 025701 (2014)ADSCrossRefGoogle Scholar
  60. 60.
    Y. Zhou et al., Phys. Status Solidi B 251, 2027–2033 (2014)ADSCrossRefGoogle Scholar
  61. 61.
    P. Entel et al., Phys. Status Solidi B 251, 2135–2148 (2014)ADSCrossRefGoogle Scholar
  62. 62.
    X. Ren et al., Mater. Sci. Eng. 312, 196–206 (2001)CrossRefGoogle Scholar
  63. 63.
    J. Zhang et al., Mater. Trans. JIM 40, 385–388 (1999)CrossRefGoogle Scholar
  64. 64.
    S. Muto et al., Acta Metall. Mater. 38, 685–694 (1990)CrossRefGoogle Scholar
  65. 65.
    E. Obradó et al., Phys. Rev. B 58, 14245 (1998)ADSCrossRefGoogle Scholar
  66. 66.
    K. Enami et al., Scr. Metall. 10, 879–884 (1976)CrossRefGoogle Scholar
  67. 67.
    D. Ma et al., Phys. Status Solidi B 245, 2642–2648 (2008)ADSCrossRefGoogle Scholar
  68. 68.
    K. Otsuka, C.M. Wayman, Shape Memory Materials (Cambridge University Press, Cambridge, 1990)Google Scholar
  69. 69.
    S. Miyazaki, K. Otsuka, S. Suzuki, Scr. Metall. 15, 287–292 (1981)CrossRefGoogle Scholar
  70. 70.
    Y. Wang, X. Ren, K. Otsuka, A. Saxena, Acta Mater. 56, 2885–2896 (2008)CrossRefGoogle Scholar
  71. 71.
    N. Nakanishi et al., Philos. Mag. 28, 277–292 (1973)ADSCrossRefGoogle Scholar
  72. 72.
    T.-H. Nam et al., J. Mater. Sci. Lett. 21, 1851–1853 (2002)CrossRefGoogle Scholar
  73. 73.
    V.A. Chernenko et al., J. Appl. Phys. 93, 2394–2399 (2003)ADSCrossRefGoogle Scholar
  74. 74.
    R. Kainuma et al., Nat. Lett. 439, 957–960 (2006)ADSCrossRefGoogle Scholar
  75. 75.
    X. Ren, Phys. Status Solidi B 251, 1982–1992 (2014)ADSCrossRefGoogle Scholar
  76. 76.
    J.M. Ball, R.D. James, Arch. Ration. Mech. Anal. 100, 13–52 (1987)CrossRefGoogle Scholar
  77. 77.
    Y. Wang, A.G. Khachaturyan, Acta Mater. 45, 759–773 (1997)CrossRefGoogle Scholar
  78. 78.
    A.G. Khachaturyan, Theory of Structural Transformation in Solids (Dover, New York, 2008)Google Scholar
  79. 79.
    O.U. Salman, A. Finel, R. Delville, D. Schryvers, J. Appl. Phys. 111, 103517 (2012)ADSCrossRefGoogle Scholar
  80. 80.
    V.I. Levitas, D.L. Preston, Phys. Rev. B 66, 134206 (2002); V.I. Levitas, D.L. Preston, Phys. Rev. B 66, 134207 (2002)ADSCrossRefGoogle Scholar
  81. 81.
    S. Kartha , J.A. Krumhansl, J.P. Sethna, L.K. Wickham, Phys. Rev. B 52, 803–822 (1995)ADSCrossRefGoogle Scholar
  82. 82.
    A. Saxena, T. Lookman, in Handbook of Materials Modeling, ed. by S. Yip, pp. 2143–2154 (Springer, Berlin, 2005)Google Scholar
  83. 83.
    P. Lloveras, T. Castán, M. Porta, A. Planes, A. Saxena, Phys. Rev. Lett. 100, 165707 (2008)ADSCrossRefGoogle Scholar
  84. 84.
    P. Lloveras, T. Castán, M. Porta, A. Planes, A. Saxena, Phys. Rev. B 80, 054107 (2009)ADSCrossRefGoogle Scholar
  85. 85.
    P. Lloveras, T. Castán, M. Porta, A. Planes, A. Saxena, Phys. Rev. B 81, 214105 (2010)ADSCrossRefGoogle Scholar
  86. 86.
    S.R. Shenoy, T. Lookman, A. Saxena, A.R. Bishop, Phys. Rev. B 60, R12537 (1999)ADSCrossRefGoogle Scholar
  87. 87.
    T. Castán, A. Planes, A. Saxena, Mat. Sci. Forum 738–739, 155–159 (2013)CrossRefGoogle Scholar
  88. 88.
    D.C. Mattis, Phys. Lett. 56A, 421–422 (1976)ADSCrossRefGoogle Scholar
  89. 89.
    C. Lu et al., Sci. Rep. 4, 4902 (2014)CrossRefGoogle Scholar
  90. 90.
    S. Narayana Jammalamadaka, AIP Adv. 1, 042151 (2011)ADSCrossRefGoogle Scholar
  91. 91.
    V.K. Pecharsky, K.A. Gschneidner Jr., C.B. Zimm, Adv. Cryog. Eng. Mater. 42, 451–458 (1996)CrossRefGoogle Scholar
  92. 92.
    S.M. Shapiro, J.Z. Larese, Y. Noda, S.C. Moss, L.E. Tanner, Phys. Rev. Lett. 57, 3199–3202 (1986)ADSCrossRefGoogle Scholar
  93. 93.
    G. Arlt, D. Hennings, G. de With, J. Appl. Phys. 58, 1619–1625 (1985)Google Scholar
  94. 94.
    L.S. Chumbley et al., IEEE Trans. Magn. 25, 2337–2340 (1989)ADSCrossRefGoogle Scholar
  95. 95.
    T. Roy, T.E. Mitchell, Philos. Mag. A 63, 225–232 (1991)ADSCrossRefGoogle Scholar
  96. 96.
    M.-S. Choi, T. Fukuda, T. Kakeshita, Scr. Mater. 53, 869–873 (2005)CrossRefGoogle Scholar
  97. 97.
    L. Zhang et al., Sci. Rep. 5, 11477 (2015)ADSCrossRefGoogle Scholar
  98. 98.
    Y. Wang, X. Ren, K. Otsuka, A. Saxena, Phys. Rev. B 76, 132201 (2007)ADSCrossRefGoogle Scholar
  99. 99.
    R.J. Hemley et al., Nature 334, 52–54 (1988)ADSCrossRefGoogle Scholar
  100. 100.
    M. Paluch, K. Grzybowska, A. Grzybowski, J. Phys. Cond. Matt. 19, 205117 (2007)ADSCrossRefGoogle Scholar
  101. 101.
    X. Moya, S. Karnarayan, N.D. Mathur, Nat. Mater. 13, 439–450 (2014)ADSCrossRefGoogle Scholar
  102. 102.
    A.S. Mischenko, Q. Zhang, R.W. Whatmore, J.F. Scott, N.D. Mathur, Appl. Phys. Lett. 89, 242912 (2006)ADSCrossRefGoogle Scholar
  103. 103.
    Z. Tang, Y. Wang, X. Liao, D. Wang, S. Yang, X. Song, J. Alloys Compd. 622, 622–627 (2015)CrossRefGoogle Scholar
  104. 104.
    Y. Murakami, D. Shindo, K. Oikawa, R. Kainuma, K. Ishida, Acta Mater. 50, 2173–2184 (2002)CrossRefGoogle Scholar
  105. 105.
    Y. Ge, O. Heczko, O. Soderberg, V.K. Lindroos, J. Appl. Phys. 96, 2159–2163 (2004)Google Scholar
  106. 106.
    J.N. Armstrong et al., J. Appl. Phys. 103, 023905 (2008)ADSCrossRefGoogle Scholar
  107. 107.
    A. Saxena et al., Phys. Rev. Lett. 92, 197203 (2004)ADSCrossRefGoogle Scholar
  108. 108.
    E.K.H. Salje, M. Alexe, S. Kustov, M.C. Weber, J. Schiemer, G.F. Nataf, J. Kreisel, Sci. Rep. 6, 27193 (2016)ADSCrossRefGoogle Scholar
  109. 109.
    E. Dagotto, Science 309, 257–262 (2005)ADSCrossRefGoogle Scholar
  110. 110.
    R. James, M. Wuttig, Philos. Mag. A 77, 1273–1299 (1998)ADSCrossRefGoogle Scholar
  111. 111.
    T. Fukuda et al., Mater. Trans. 45, 188–192 (2004)CrossRefGoogle Scholar
  112. 112.
    M. Uehara, S. Mori, C.H. Chen, S.-W. Cheong, Nature 399, 560–563 (1999)ADSCrossRefGoogle Scholar
  113. 113.
    R.A. Pelcovits, E. Pytte, J. Rudnick, Phys. Rev. Lett. 40, 476–479 (1978)ADSCrossRefGoogle Scholar
  114. 114.
    L. Krusin-Elbaum, A.P. Malozemoff, R.C. Taylor, Phys. Rev. B 27, 562–565 (1983)ADSCrossRefGoogle Scholar
  115. 115.
    B.E. Vugmeister, M.D. Glinchuk, Rev. Mod. Phys. 62, 993–1026 (1990)ADSCrossRefGoogle Scholar
  116. 116.
    A. Levstik et al., Appl. Phys. Lett. 91, 012905 (2007)ADSCrossRefGoogle Scholar
  117. 117.
    M.H. Phan et al., Phys. Rev. B 81, 094413 (2010)ADSCrossRefGoogle Scholar
  118. 118.
    P. Lloveras, G. Touchagues, T. Castán, T. Lookman, M. Porta, A. Saxena, A. Planes, Phys. Stat. Sol. B 251, 2080–2087 (2014)ADSCrossRefGoogle Scholar
  119. 119.
    A. Aharoni, Introduction to the Theory of Ferromagnetism (Oxford University Press, New York, 1996)Google Scholar
  120. 120.
    C. Kittel, Rev. Mod. Phys. 21, 541–583 (1949)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • P. Lloveras
    • 1
    • 2
    Email author
  • T. Castán
    • 3
  • M. Porta
    • 4
  • A. Saxena
    • 5
  • A. Planes
    • 3
  1. 1.Grup de Caracterització de Materials, Departament de Física, EEBEUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Barcelona Research Center in Multiscale Science and EngineeringBarcelonaSpain
  3. 3.Departament de Física de la Matèria Condensada, Facultat de FísicaUniversitat de BarcelonaBarcelonaSpain
  4. 4.Departament de Física Quàntica i Astrofísica, Facultat de FísicaUniversitat de BarcelonaBarcelonaSpain
  5. 5.Theoretical DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations