Skip to main content

Probing Glassiness in Heuslers via Density Functional Theory Calculations

  • Chapter
  • First Online:
Frustrated Materials and Ferroic Glasses

Abstract

Heusler compounds and alloys form a unique class of intermetallic systems with functional properties interfering with basic questions of fundamental aspects of materials science. Among the functional properties, the magnetic shape memory behavior (Planes et al., J Phys: Condens Matter 21:233201 (29 pp), 2009) and the ferrocaloric effects like the inverse magnetocaloric effect which is associated with the first order magnetostructural transformation with a jump-like change of the magnetization with lowering of temperature (Acet et al., Magnetic-field-induced effects in martensitic Heusler-based magnetic shape memory alloys. In: Bushow KHJ (ed) Handbook of magnetic materials, vol 19. North-Holland, Amsterdam, pp 231–289, 2011) have been intensively investigated in various reviews. Important references can be found in Acet et al. (Magnetic-field-induced effects in martensitc Heusler-based magnetic shape memory alloys. In: Bushow KHJ (ed) Handbook of magnetic materials, vol 19. North-Holland, Amsterdam, pp 231–289, 2011). Besides magnetocaloric effects, other ferroic cooling mechanisms of Heuslers (electrocaloric, barocaloric, and elastocaloric ones) have recently been discussed by Xavier Moya et al. (Nat Mater 13:439–450, 2014). A discussion of caloric effects in ferroic materials including a brief discussion of the importance of correlating time and length scales can be found in Fähler et al. (Adv Eng Mater 14:10–19, 2012). In the present article, we emphasize this item further by showing that, in particular, the physics at different time scales leads to markedly different properties of the Heusler materials. “Rapidly quenched” alloys behave differently from “less rapidly quenched” alloys. In the latter case, the so-called magnetostructural transformation may vanish altogether because of segregation of the alloys into the stoichiometric L21 Heusler phase and L10 Ni-Mn occurs. We argue that this tendency for segregation is at the origin of glassiness in Heuslers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Çakır, L. Righi, F. Albertini, M. Acet, M. Farle, Intermartensitic transitions and phase stability in Ni50Mn50−xSnx Heusler alloys. Acta Mater. 99, 140 (2015)

    Article  Google Scholar 

  2. Y. Wang, C. Huang, J. Gso, S. Yang, X. Ding, X. Song, X. Ren, Evidence for ferromagnetic strain glass in Ni-Co-Mn-Ga Heusler alloy system. Appl. Phys. Lett. 101, 101913 (2012)

    Article  ADS  Google Scholar 

  3. X. Ren, Y. Wang, Y. Zhou, Z. Zhang, D. Wang, G. Fan, K. Otsula, T. Suzuki, Y. Ji, J. Zhang, Y. Tian, S. Hou, X. Ding, Strain glass in ferroeleastic systems: premartensitic tweed versus strain glass. Philos. Mag. 90, 141 (2010)

    Article  ADS  Google Scholar 

  4. A. Çakır, M. Acet, M. Farle, Shell-ferromagnetism of nano-Heuslers generated by segregation under magnetic field. Sci. Rep. 6, 28931 (2016)

    Article  ADS  Google Scholar 

  5. O. Mesheriakova, S. Chadow, A.K. Nayak, U.K. Rößler, J. Kübler, G. André, A.A. Tsirlin, J. Kiss, S. Hausdorf, A. Kalache, W. Schnelle, M. Nicklas, C. Felser, Large noncollineraity and spin reorientation in the novel Mn2RhSn Heusler magnet. Phys. Rev. Lett. 113, 0897203 (2014)

    Google Scholar 

  6. S. Singh, S.W. D’Souza, J. Nayak, E. Suard, L. Chapon, A. Senyshyn, V. Petricek, Y. Skourskim, M. Nicklas, C. Felser, S. Chadov, Room-temperature tetragonal non-collinear Heusler antiferromagnet Pt2MnGa. Nat. Commun. 7, 12671 (2016)

    Article  ADS  Google Scholar 

  7. C. Phatak, O. Heinonen, M. De Graef, A. Petford-Long, Nanoscale Skyrmions in a nonchiral metallic multiferroic: Ni2MnGa. NanoLett. 16, 4141 (2016)

    Article  ADS  Google Scholar 

  8. P.J. Webster, K.R.A. Ziebeck, S.L. Town, M.S. Peak, Magnetic order and phase transformation in Ni2MnGa. Philos. Mag. 49, 295 (1984)

    Article  ADS  Google Scholar 

  9. P. Entel, A. Dannenberg, M. Siewert, H.C. Herper, M.E. Gruner, V.D. Buchelnikov, V.A. Chernenko, Composition-dependent basics of smart Heusler materials from first-principles caculations. Mater. Sci. Forum 684, 1 (2011)

    Article  Google Scholar 

  10. P. Entel, V.D. Buchelnkov, V.V. Khovailo, A.T. Zayak, W.A. Adeagbo, M.E. Gruner, H.C. Herper, E.F. Wassermann, Modelling the phase diagram of magnetic shape memory alloys. J. Phys. D: Appl. Phys. 39, 865 (2006)

    Article  ADS  Google Scholar 

  11. K. Ullakko, J.K. Huang, C. Kantner, R.C. O’Handley, V.V. Kokorin, Large magnetic-field-induced strains in Ni2MnGa, Appl. Phys. Lett. 69, 1966 (1996)

    Article  ADS  Google Scholar 

  12. S.J. Murray, M. Marioni, S.M. Allen, R.C. O’Handley, 6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni-Mn-Ga. Appl. Phys. Lett. 77, 886 (2000)

    Article  ADS  Google Scholar 

  13. O. Söderberg, Y. Ge, A. Sozinov, S.-P. Hannula, V.K. Lindroos, Recent breakthrough development of the magnetic shape memory effect in Ni-Mn-Ga alloys. Smart Mater. Struct. 14, S223 (2005)

    Article  Google Scholar 

  14. B. Kiefer, D.C. Lagoudas, Magnetic field-induced martensitic variant reorientation in magnetic shape memory alloys. Philos. Mag. 85, 4289 (2005)

    Article  ADS  Google Scholar 

  15. I. Karaman, B. Basaran, H.E. Karaca, A.I. Karsilayan, Y.I. Chumlyakov, Energy harvesting using martensite variant reorientation mechanism in NiMnGa magnetic shape memory alloy. Appl. Phys. Lett. 90, 172505 (2007)

    Article  ADS  Google Scholar 

  16. S. Kaufmann, U.K. Rößler, O. Heczko, M. Wuttig, J. Buschbeck, L. Schultz, S. Fähler, Adaptive modulations of martensites. Phys. Rev. Lett. 104, 145702 (2010)

    Article  ADS  Google Scholar 

  17. R. Niemann, U.K. Rößler, M.E. Gruner, O. Heczko, L. Schultz, S. Fähler. The role of adaptive martensite in magnetic shape memory alloys. Adv. Eng. Mater. 14, 562 (2012)

    Article  Google Scholar 

  18. J.M. Barandiaran, V.A. Chernenko, E. Cesari, D. Salas, P. Lazpitza, J. Gutierrez, I. Orue, Magnetic influence on the martensitic transformation entropy in Ni-Mn-In metamagnetic alloy. Appl. Phys. Lett. 102, 071904 (2013)

    Article  ADS  Google Scholar 

  19. J.M. Barandiaran, V.A. Chernenko, E. Cesari, D. Salas, J. Gutierrez, P. Lazpita, Magnetic field and atomic order effect on the martensitic transformation of a metamagnetic alloy. J. Phys.: Condens. Matter. 25, 484005 (2013)

    Google Scholar 

  20. P.J. Stonaha, M.E. Manley, N.M. Bruno, I. Karaman, R. Arróyave, N. Singh, D.L. Abernathy, S. Chi, Lattice vibrations boost demagnetization entropy in a shape-memory alloy. Phys. Rev. B 92, 140406(R) (2015)

    Google Scholar 

  21. H. Ebert et al., The Munich SPR-KKR package, version 6.3. http://ebert.cup.uni-muenchen.de/SPRKKR. H. Ebert, D. Ködderitzsch, J. Minár, Rep. Prog. Phys. 74, 096501 (2011)

    Article  ADS  Google Scholar 

  22. V.D. Buchelnikov, P. Entel, S.V. Taskaev, V.V. Sokolovskiy, A. Hucht, M. Ogura, H. Akai, M.E. Gruner, S.K. Nayak, Monte Carlo study of the influence of antiferromagnetic exchange interactions on the phase transitions of ferromagnetic Ni-Mn-X alloys (X = In, Sn , Sb). Phys. Rev. B 78, 184427 (2008)

    Article  ADS  Google Scholar 

  23. V.D. Buchelnikov, V.V. Sokolovskiy, S.V. Taskaev, V.V. Khovaylo, A.A. Aliev, L.N. Khanov, A.B. Batdalov, P. Entel, H. Miki, T. Takagi, Monte Carlo simulations of the magnetocaloric effect in magnetic Ni-Mn-X (X = Ga, In) Heusler alloys. J. Phys. D: Appl. Phys. 44, 064012 (2011)

    Article  ADS  Google Scholar 

  24. D. Comtesse, M.E. Gruner, M. Ogura, V.V. Sokolovskiy, V.D. Buchelnikov, A. Grünebohm, R. Arróyave, N. Singh, T. Gottsschall, O. Gutfleisch, V.A. Chernenko, F. Albertini, S. Fähler, P. Entel, First-pinciples calculation of the instability leading to giant inverse magnetocaloric effects. Phys. Rev. B 89, 184403 (2014)

    Article  ADS  Google Scholar 

  25. T. Castán, E. Vives, P. Lindgård, Modeling premartensitic effects in Ni2MnGa: a mean-field and Monte Carlo simulation study. Phys. Rev. B 60, 7071 (1999)

    Article  ADS  Google Scholar 

  26. V.V. Sokolovskiy, M.A. Zagrebin, V.D. Buchelnikov, Novel achievements in the research field of multifunctional shape memory Ni-Mn-In and Ni-Mn-In-Z Heusler alloys. Mater. Sci. Found. 81/82, 38 (2015)

    Article  Google Scholar 

  27. N. Singh, R. Arróyave, P. Entel, Monte Carlo simulations of Spin-glass effects in Ni-Mn-In Heusler alloys (to be published)

    Google Scholar 

  28. V.V. Sokolovskiy, P. Entel, V.D. Buchelnikov, M.E. Gruner, Achieving large magnetocaloric effects in Co- and Cr-substituted Heusler alloys: predictions from first-principles and Monte Carlo studies. Phys. Rev. B 91, 220409(R) (2015)

    Google Scholar 

  29. Y.M. Jin, A.G. Khachaturyan, Atomic density function theory and modeling of microstructure evolution at the atomic scale. J. Appl. Phys. 100, 013519 (2006)

    Article  ADS  Google Scholar 

  30. A.G. Khachaturyan, Theory of Structural Transformation in Solids (Dober Publications, New York, 1983)

    Google Scholar 

  31. S. Stamenković, The unified model description of order disorder and displacive structural phase transitions. Condens. Matter. Phys. 1, 257 (1998)

    Article  Google Scholar 

  32. J.A. Krumhansl, J.R. Schrieffer, Dynamics and statistical mechanics of a one-dimensional model Hamiltonian for structural phase transition. Phys. Rev. B 11, 3535 (1975)

    Article  ADS  Google Scholar 

  33. V. Recarte, J.I. Pérez-Landazábal, V. Sánchez-Alarcos, Dependence of the relative stability between autenite and martensite phases on the atomic order in a Ni-Mn-In metamagnetic shape memory alloy. J. Alloys Compd. 536s, S5308 (2012)

    Article  Google Scholar 

  34. C. Salazar Mejıa, A.K. Nayak, J.A. Schiemer, C. Felser, M. Nicklas, M.A. Carpenter, Strain behavior and lattice dynamics in Ni50Mn35In15. J. Phys.: Condens. Matter. 27, 415402 (2015)

    Google Scholar 

  35. A. Planes, L. Mañosa, M. Acet, Magnetovolume effect and its relation to shape-memory properties in ferromagnetic Heusler alloys. J. Phys.: Condens. Matter. 21, 233201 (2009)

    ADS  Google Scholar 

  36. M. Acet, L. Mañosa, A. Planes, Magnetic-field-induced effects in martensitc Heusler-based magnetic shape memory alloys, in Handbook of Magnetic Materials, vol. 19, ed. by K.H.J. Bushow (North-Holland, Amsterdam, 2011), pp. 231–289

    Google Scholar 

  37. D.Y. Cong, S. Roth, L. Schultz, Magnetic properties and structural transfroations in Ni-Co-Mn-Sn multifunctional alloys. Acta Mater. 60, 5335 (2012)

    Article  Google Scholar 

  38. D.Y. Cong, S. Roth, Y.D. Wang, Superparamagnetism and superspin glass behaviors in multiferroic NiMn-based magnetic shape memory alloys. Phys. Status Solidi 251, 2126 (2014)

    Article  ADS  Google Scholar 

  39. R.Y. Umetsu, R. Kainuma, Y. Amako, Y, Taniguchi, T. Kanomata, K. Fukushima, A. Fujita, A. Oikawa, K. Ishida, Mössbauer study on martensitic phase in Ni50Mn\(_{36.5}^{57}\)Fe0.5Sn13 metamagnetic shape memory alloy. Appl. Phys. Lett. 93, 042509 (2008)

    Google Scholar 

  40. V.V. Khovaylo, T. Kanomata, T. Kanata, M. Nakashima, Y. Amako, R. Kainuma, R.Y. Umetsu, H. Morito, H. Miki, Magnetic properties of Ni50Mn34.8In15.2 probed by Mössbauer spectroscopy. Phys. Rev. B 80, 144409 (2009)

    Google Scholar 

  41. S. Chatterjee, S. Giri, S.K. De, S. Majumdar, Reentrant spin-glass state in Ni2Mn1.36Sn0.64 shape-memory alloy. Phys. Rev. B 79, 092410 (2009)

    Google Scholar 

  42. J.I. Pérez-Landazabal, V. Recarte, V. Sanchez-Alarcos, C. Gómez-Polo, E. Cesari, Magnetic properties of the martensitic phase in Ni-Mn-In-Co metamagnetic shape memory alloys. Appl. Phys. Lett. 102, 101908 (2013)

    Article  ADS  Google Scholar 

  43. S. Yuan, P.L. Kuhns, A.P. Reyes, J.S. Brooks, M.J.R. Hoch, V. Shrivastava, R.D. James, S. El-Khatib, C. Leighton, Magnetically nanostructured state in a Ni-Mn-Sn shape-memory alloy. Phys. Rev. B 91, 214421 (2015)

    Article  ADS  Google Scholar 

  44. W. Ito, K. Ito, R.Y. Umetsu, R. Kainuma, K. Koyama, K. Watanabe, A. Fujita, K. Oikawa, K. Ishida, T. Kanomata, Kinetic arrest of martensitic transformation in the NiCoMnIn metamagnetic shape memory alloy. Appl. Phys. Lett. 92, 021908 (2008)

    Article  ADS  Google Scholar 

  45. X. Xu, W. Ito, R.Y. Umetsu, K. Koyama, R. Kainuma, K. Ishida, Kinetic arrest of martenstic transformation in Ni33.0Co13.4Mn39.7Ga13.9 metamagnetic shape memory alloy. Mater. Trans. JIM 51, 469 (2010)

    Google Scholar 

  46. A. Lakhani, S. Dash, A. Banerjee, P. Chaddah, X. Chen, R.V. Ramanjuan, Tuning the austenite and martensite phase fraction in ferromagnetic shape memory alloy ribbons of Ni45Co5Mn38Sn12. Appl. Phys. Lett. 99, 242503 (2011)

    Article  ADS  Google Scholar 

  47. R.Y. Umetsu, K. Ito, W. Ito, K. Koyama, T. Kanomata, K. Ishida, R. Kainuma, Kinetic arrest behavior in martensitic transformation of NiCoMnSn metamagentic shape memory alloy. J. Alloys Comp. 509, 1389 (2011)

    Article  Google Scholar 

  48. X. Xu, W. Ito, M. Tokunaga, R.Y. Umetsu, R. Kainuma, K. Ishida, Kinetic arrest of martensitic transformation in NiCoMnAl metamagnetic shape memory alloy. Mater. Trans. JIM 51, 1357 (2010)

    Article  Google Scholar 

  49. X. Xu, W. Ito, M. Tokunaga, T. Kihara, K. Oka, R.Y. Umetsu, T. Kanomata, R. Kainuma, The thermal transformation arrest phenomenon in NiCoMnAl Heusler alloys. Metals 3, 298 (2013)

    Article  Google Scholar 

  50. S.K. Ghatak, D.K. Ray, Structural and magnetic instabilities in a twofold-degenerate band. Phys. Rev. B 31, 3064 (1985)

    Article  ADS  Google Scholar 

  51. D.K. Ray, J.P. Jordan, Elastic and magnetic interactions in a narrow twofold-degenerate band. Phys. Rev. B 33, 5021 (1986)

    Article  ADS  Google Scholar 

  52. J.L. Shen, D.W. Zhao, G.K. Li, L. Ma, L.Y. Jia, C.M. Zhen, D.L. Hou, Kinetic arrest and de-arrest in Mn50Ni36Sn9Co5 ferromagnetic shape memory alloy. Phys. Status Solidi B 253, 1923 (2016)

    Article  ADS  Google Scholar 

  53. V.K. Sharma, M.K. Chattopadhyay, S.K. Roy, Kinetic arrest of the first-order austenite to martensite phase transition in Ni50Mn34In16: DC magnetization studies. Phys. Rev. B 76, 140401(R) (2007)

    Google Scholar 

  54. J.L. Sánchez Llamazares, B. Hernando, J.J. Suñol, C. Facia, C.A. Ross, Kinetic arrest of direct and reverse martensitic transfromation and exchange bias effect in Mn49.5Ni40.4In10.1 melt spun ribbons. J. Appl. Phys. 107, 09A956 (2010)

    Google Scholar 

  55. J.A. Monroe, J.E. Raymond, X. Xu, N. Nagasako, R. Kainuma, Y.I. Chumlyakov, R. Arróyave, I. Karaman, Multiple ferroic glasses via ordering. Acta Mater. 101, 107 (2015)

    Article  Google Scholar 

  56. F.H. Stillinger, P.G. Debenedetti, T.M. Truskett, The Kauzmann paradox revisited. J. Phys. Chem. B 105, 11809 (2001)

    Article  Google Scholar 

  57. C. Segui, E. Cesari, P. Lázpita, Magneitc properties of martensite in metamagnetic Ni-Co-Mn-Ga alloys. J. Phys. D: Appl. Phys. 49, 165007 (2016)

    Article  ADS  Google Scholar 

  58. M. van Schilfgaarde, I.A. Abrikosov, B. Johansson, Origin of the Invar effect in iron-nickel alloys. Nature 400, 46 (1999)

    Article  ADS  Google Scholar 

  59. P. Lloveras, T. Castán, M. Porta, A. Saxena, A. Planes, Mesoscopic modelling of strain glass, in Frustrated Materials and Ferroic Glasses, Springer Series in Materials Science 275 (Springer, Cham, 2018)

    Google Scholar 

  60. A. Grünebohm, H.C. Herper, P. Entel, On the rich magnetic phase diagram of (Ni, Co)-Mn-Sn Heusler alloys. J. Phys. D: Appl. Phys. 49, 395001 (2016)

    Article  Google Scholar 

  61. S. Mankovsky, unpublished data

    Google Scholar 

  62. L. Sandratskii, unpublished data

    Google Scholar 

  63. D.L. Schlagel, R.W. McCallum, T.A. Lograsso, Influence of solidification microstructure on the magnetic proerties of Ni-Mn-Sn Heusler alloys. J. Alloys Comp. 463, 38 (2008)

    Article  Google Scholar 

  64. W.M. Yuhasz, D.L. Schlagel, Q. Xing, K.W. Dennis, R.W. McCallum, T.A. Lograsso, Influence of annealing and phase decomposition on the magnetostructural transitions in Ni50Mn39Sn11. J. Appl. Phys. 105, 07A921 (2009)

    Google Scholar 

  65. W.M. Yuhasz, D.L. Schlagel, Q. Xing, R.W. Callum, T.A. Lograsso, Metastability of ferromagnetc Ni-Mn-Sn alloys. J. Alloys Comp. 492, 681 (2010)

    Article  Google Scholar 

  66. E. Cesari, J. Font, J. Muntashell, P. Ochin, J. Pons, R. Santamarta, Thermal stability of high-temperature Ni-Mn-Ga alloys. Scr. Mater. 58, 259 (2008)

    Article  Google Scholar 

  67. J.R. Aseguinoaza, V. Golub, O.Y. Salyuk, B. Muntifering, W.B. Knowlton, P. Müllner, J.M. Barandiaran, V.A. Chernenko, Self-patterning of epitaxial Ni-Mn-Ga/MgO(001) thin films. Acta Mater. 111, 163 (2016)

    Google Scholar 

  68. D. Merida, J.A. Garcia, E. Apiãniz, F. Plazaola, V. Sanchez-Alarcos, J. Pérez Landazábal, V. Recarte, Positron annihilation spectroscopy study of Ni-Mn-Ga ferromagnetic shape memory alloys. Phys. Proc. 35, 57 (2012)

    Article  ADS  Google Scholar 

  69. D. Merida, J.A. Garćia, V. Sánchez-Alarcos, J.I. Perez-Landazábal, V. Recarte, F. Plazaola, Characterization and Modelling of vacancy dynamics in Ni-Mn-Ga ferromagnetic shape memory alloys. J. Alloys Comp. 639, 180 (2015)

    Article  Google Scholar 

  70. A.M. Pérez-Sierra, J. Pons, R. Santamarta, P. Vernaut, P. Ochin, Solidification process and effect of thermal treatments on Ni-Co-Mn-Sn metamagentic shape memory alloys. Acta Mater. 93, 164 (2015)

    Article  Google Scholar 

  71. V. Sánchez-Alarcos, J.I. Pérez-Landazábal, V. Recarte, I. Lucia, J. Vélez, J.A. Rodríguez-Velamazán, Effect of high temperatue quenching on the magnetostructural transformations and long-range atomic order of Ni-Mn-Sn adn Ni-Mn-Sb metamagetic shape memory alloys. Acta Mater. 61, 4676 (2013)

    Article  Google Scholar 

  72. M.K. Ray, K.Bagani, S. Banerjee, Effect of excess Ni on martensitic transition, exchange bias and inverse magnetocaloric effect in Ni2+xMn1.4−xSn0.6 alloy. J. Alloys Comp. 600, 55 (2014)

    Google Scholar 

  73. P. Entel, V.V. Sokolovskiy, V.D. Buchelnikov, M. Ogura, M.E. Gruner, A. Grünebohm, D. Comtessse, H, Akai, The metamagnetic behavior and giant inverse magnetocaloric effect in Ni-Co-Mn-(Ga, In, Sn) Heusler alloys. J. Magn. Magn. Mater. 385, 193 (2015)

    Article  ADS  Google Scholar 

  74. A. Çakır, M. Acet, Non-volatile high-temperature shell-magnetic pinning of Ni-Mn-Sn Heusler precipitates obtained by decomposition under magnetic field. J. Magn. Magn. Mater. 448, 13 (2018)

    Article  ADS  Google Scholar 

  75. T. Krenke, A. Çakır, F. Scheibel, M. Acet, M. Farle, Magnetic proximity effect and shell-ferromagnetism in metastable Ni45Mn45Ga5. J. Appl. Phys. 120, 243904 (2016)

    Article  ADS  Google Scholar 

  76. A. Çakır, M. Acet, Shell ferromagnetism in Ni-Mn based Heuslers in view of ductile Ni-Mn-Al. AIP Adv. 7, 056424 (2017)

    Article  ADS  Google Scholar 

  77. T. Miyamoto, W. Ito, R.Y. Umetsu, R. Kainuma, T. Kanomata, K. Ishida, Phase stability and magnetic properties of Ni50Mn50−xInx Heusler type alloys. Scr. Mater. 62, 151 (2010)

    Article  Google Scholar 

  78. T. Miyamoto, W. Ito, R.Y. Umetsu, T. Kanomata, K. Ishida, R. Kainuma, Influence of annealing conditions on magnetic properties of Ni50Mn50−xInx Heusler type alloys. Mater. Trans. JIM 52, 1836 (2011)

    Article  Google Scholar 

  79. R. Kainuma, F. Gejima, Y, Sutou, I. Ohnuma, K. Aoki, K. Ishida, Ordering, martensitic and ferromagnetic transformations in Ni-Al-Mn Heusler shape memory alloys. Mater. Trans. JIM 41, 943 (2000)

    Google Scholar 

  80. R.W. Overholser, M. Wuttig, D.A. Neumann, Chemical ordering in Ni-Mn-Ga Heusler alloys. Scr. Mater. 40, 1095 (1999)

    Article  Google Scholar 

  81. W.L. Bragg, E.J. Williams, The effect of thermal agitation on atomic arrangement in alloys. Proc. R. Soc. A 145, 699 (1934)

    Article  ADS  Google Scholar 

  82. J.S. Kaspar, J.S. Kouvel, The antiferromagnetic structure of NiMn. J. Phys. Chem. Solids 11, 231 (1959)

    Article  ADS  Google Scholar 

  83. M. Siewert, Electronic, magnetic and thermodynamic properties of magnetic shape memory alloys from first principles. PhD thesis, University of Duisburg-Essen, 2012

    Google Scholar 

  84. E. Krén, E. Nagy, I. Nagy, L. Pál, P. Szabó, Structures and phase transformations in the Ni-Mn system near equiatomic concentration. J. Phys. Chem. Solids 29, 101 (1968)

    Article  ADS  Google Scholar 

  85. N.M. Bruno, S. Wang, I. Karaman, Y.I. Chumlyakov, Reversible martensitic transformation under low magnetic fields in magnetic shape memory alloys. Sci. Rep. 7, 40434 (2017)

    Article  ADS  Google Scholar 

  86. X. Moya, S. Kar-Narayan, N.D. Mathur, Caloric materials near ferroic phase transitions. Nat. Mater. 13, 439–450 (2014)

    Article  ADS  Google Scholar 

  87. S. Fähler, U. Rößler, O. Kastner, J. Eckert, G. Eggeler, H. Emmerich, P. Entel, S. Müller, E. Quandt, K. Albe, Caloric effects in ferroic materials: new concepts for cooling. Adv. Eng. Mater. 14, 10–19 (2012)

    Article  Google Scholar 

  88. P. Entel, M.E. Gruner, S. Fähler, M. Acet, A. Çahır, R. Arróyave, S. Sahoo, T.C. Duong, A. Talapatra, L. Sandratskii, S. Mankowsky, T. Gottschall, O. Gutfleisch, P. Lázpita, V.A. Chernenko, J.M. Barandiaran, V.V. Sokolovskiy, V.D. Buchelnikov, Probing Structural and Magnetic Instabilities and Hysteresis in Heuslers by Density Functional Theory Calculations. Phys. Status Solidi B 255, 1700296 (2018). https://doi.org/10.1002/pssb.201700296

    Article  ADS  Google Scholar 

  89. M.E. Gruner, R. Niemann, P. Entel, R. Pentcheva, U.K. Rössler, K. Nielsch, S. Fähler, Modulations in martensitic Heusler alloys originate from nanotwin ordering. Sci. Rep. 8, 8489 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the DFG priority programme SPP 1599.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Gruner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Entel, P. et al. (2018). Probing Glassiness in Heuslers via Density Functional Theory Calculations. In: Lookman, T., Ren, X. (eds) Frustrated Materials and Ferroic Glasses. Springer Series in Materials Science, vol 275. Springer, Cham. https://doi.org/10.1007/978-3-319-96914-5_6

Download citation

Publish with us

Policies and ethics