Advertisement

Faster Homomorphic Linear Transformations in HElib

  • Shai Halevi
  • Victor Shoup
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10991)

Abstract

HElib is a software library that implements homomorphic encryption (HE), with a focus on effective use of “packed” ciphertexts. An important operation is applying a known linear map to a vector of encrypted data. In this paper, we describe several algorithmic improvements that significantly speed up this operation: in our experiments, our new algorithms are 30–75 times faster than those previously implemented in HElib for typical parameters.

One application that can benefit from faster linear transformations is bootstrapping (in particular, “thin bootstrapping” as described in [Chen and Han, Eurocrypt 2018]). In some settings, our new algorithms for linear transformations result in a \(6{\times }\) speedup for the entire thin bootstrapping operation.

Our techniques also reduce the size of the large public evaluation key, often using 33%–50% less space than the previous HElib implementation. We also implemented a new tradeoff that enables a drastic reduction in size, resulting in a \(25{\times }\) factor or more for some parameters, paying only a penalty of a 2–\(4{\times }\) times slowdown in running time (and giving up some parallelization opportunities).

Keywords

Homomorphic encryption Implementation Linear transformations 

References

  1. 1.
    Alperin-Sheriff, J., Peikert, C.: Practical bootstrapping in quasilinear time. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 1–20. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40041-4_1CrossRefzbMATHGoogle Scholar
  2. 2.
    Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption without bootstrapping. In: Innovations in Theoretical Computer Science (ITCS 2012) (2012). http://eprint.iacr.org/2011/277
  3. 3.
    Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. ACM Trans. Comput. Theory 6(3), 13 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chen, H., Han, K.: Homomorphic lower digits removal and improved FHE bootstrapping. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 315–337. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78381-9_12CrossRefGoogle Scholar
  5. 5.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the 41st ACM Symposium on Theory of Computing - STOC 2009, pp. 169–178. ACM (2009)Google Scholar
  6. 6.
    Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 465–482. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_28CrossRefGoogle Scholar
  7. 7.
    Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 554–571. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44371-2_31CrossRefzbMATHGoogle Scholar
  8. 8.
    Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 641–670. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46800-5_25CrossRefGoogle Scholar
  9. 9.
    Halevi, S., Shoup, V.: HElib - an implementation of homomorphic encryption, September 2014. https://github.com/shaih/HElib/
  10. 10.
    Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13190-5_1CrossRefGoogle Scholar
  11. 11.
    Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 35–54. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38348-9_3CrossRefGoogle Scholar
  12. 12.
    Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. J. ACM 60(6), 43 (2013). Early version in EUROCRYPT 2010MathSciNetCrossRefGoogle Scholar
  13. 13.
    Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomorphisms. In: Foundations of Secure Computation, pp. 169–177. Academic Press (1978)Google Scholar
  14. 14.
    Roman, S.: Field Theory, 2nd edn. Springer, New York (2006).  https://doi.org/10.1007/0-387-27678-5CrossRefzbMATHGoogle Scholar
  15. 15.
    Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes Cryptography 71(1), 57–81 (2014). Early verion at http://eprint.iacr.org/2011/133CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2018

Authors and Affiliations

  1. 1.IBM ResearchYorktown HeightsUSA
  2. 2.New York UniversityNew YorkUSA

Personalised recommendations