Advertisement

Multi-Input Functional Encryption for Inner Products: Function-Hiding Realizations and Constructions Without Pairings

  • Michel Abdalla
  • Dario Catalano
  • Dario Fiore
  • Romain Gay
  • Bogdan Ursu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10991)

Abstract

We present new constructions of multi-input functional encryption (MIFE) schemes for the inner-product functionality that improve the state of the art solution of Abdalla et al. (Eurocrypt 2017) in two main directions.

First, we put forward a novel methodology to convert single-input functional encryption for inner products into multi-input schemes for the same functionality. Our transformation is surprisingly simple, general and efficient. In particular, it does not require pairings and it can be instantiated with all known single-input schemes. This leads to two main advances. First, we enlarge the set of assumptions this primitive can be based on, notably, obtaining new MIFEs for inner products from plain DDH, LWE, and Decisional Composite Residuosity. Second, we obtain the first MIFE schemes from standard assumptions where decryption works efficiently even for messages of super-polynomial size.

Our second main contribution is the first function-hiding MIFE scheme for inner products based on standard assumptions. To this end, we show how to extend the original, pairing-based, MIFE by Abdalla et al. in order to make it function hiding, thus obtaining a function-hiding MIFE from the MDDH assumption.

Notes

Acknowledgments

Michel Abdalla was supported in part by SAFEcrypto (H2020 ICT-644729) and by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement 780108 (FENTEC). Dario Fiore was partially supported by the Spanish Ministry of Economy under project references TIN2015-70713-R (DEDETIS), RTC-2016-4930-7 (DataMantium), and by the Madrid Regional Government under project N-Greens (ref. S2013/ICE-2731). Romain Gay was partially supported by a Google PhD Fellowship in Privacy and Security and by the ERC Project aSCEND (H2020 639554). Bogdan Ursu was partially supported by ANR-14-CE28-0003 (Project EnBiD) and by the ERC Project PREP-CRYPTO (H2020 724307).

References

  1. 1.
    Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–751. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46447-2_33CrossRefGoogle Scholar
  2. 2.
    Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Better security for functional encryption for inner product evaluations. Cryptology ePrint Archive, Report 2016/011 (2016). http://eprint.iacr.org/2016/011
  3. 3.
    Abdalla, M., Catalano, D., Fiore, D., Gay, R., Ursu, B.: Multi-Input Functional Encryption for Inner Products: Function-Hiding Realizations and Constructions without Pairings. Cryptology ePrint Archive, Report 2017/972 (2017). http://eprint.iacr.org/2017/972
  4. 4.
    Abdalla, M., Gay, R., Raykova, M., Wee, H.: Multi-input inner-product functional encryption from pairings. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 601–626. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56620-7_21CrossRefGoogle Scholar
  5. 5.
    Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53015-3_12CrossRefGoogle Scholar
  6. 6.
    Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 308–326. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-47989-6_15CrossRefGoogle Scholar
  7. 7.
    Badrinarayanan, S., Gupta, D., Jain, A., Sahai, A.: Multi-input functional encryption for unbounded arity functions. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp. 27–51. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48797-6_2CrossRefGoogle Scholar
  8. 8.
    Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19571-6_16CrossRefGoogle Scholar
  9. 9.
    Brakerski, Z., Komargodski, I., Segev, G.: Multi-input functional encryption in the private-key setting: stronger security from weaker assumptions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 852–880. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49896-5_30CrossRefzbMATHGoogle Scholar
  10. 10.
    Datta, P., Okamoto, T., Tomida, J.: Full-hiding (unbounded) multi-input inner product functional encryption from the k-linear assumption. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp. 245–277. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-76581-5_9CrossRefGoogle Scholar
  11. 11.
    Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_8CrossRefGoogle Scholar
  12. 12.
    Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_32CrossRefGoogle Scholar
  13. 13.
    Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 599–629. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_20CrossRefGoogle Scholar
  14. 14.
    Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like assumptions on constant-degree graded encodings. In: Dinur, I. (ed.) 57th FOCS, pp. 11–20. IEEE Computer Society Press, October 2016Google Scholar
  15. 15.
    O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive, Report 2010/556 (2010). http://eprint.iacr.org/2010/556
  16. 16.
    Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005).  https://doi.org/10.1007/11426639_27CrossRefGoogle Scholar
  17. 17.
    Wee, H.: Attribute-hiding predicate encryption in bilinear groups, revisited. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 206–233. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70500-2_8CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2018

Authors and Affiliations

  1. 1.Département informatique de l’ENS, École normale supérieure, CNRS, PSL UniversityParisFrance
  2. 2.INRIAParisFrance
  3. 3.Dipartimento di Matematica e InformaticaUniversità di CataniaCataniaItaly
  4. 4.IMDEA Software InstituteMadridSpain
  5. 5.KITKarlsruheGermany

Personalised recommendations