Advertisement

Generic Attacks Against Beyond-Birthday-Bound MACs

  • Gaëtan Leurent
  • Mridul Nandi
  • Ferdinand Sibleyras
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10991)

Abstract

In this work, we study the security of several recent MAC constructions with provable security beyond the birthday bound. We consider block-cipher based constructions with a double-block internal state, such as SUM-ECBC, PMAC+, 3kf9, GCM-SIV2, and some variants (LightMAC+, 1kPMAC+). All these MACs have a security proof up to \(2^{2n/3}\) queries, but there are no known attacks with less than \(2^{n}\) queries.

We describe a new cryptanalysis technique for double-block MACs based on finding quadruples of messages with four pairwise collisions in halves of the state. We show how to detect such quadruples in SUM-ECBC, PMAC+, 3kf9, GCM-SIV2 and their variants with \(\mathcal {O}(2^{3n/4})\) queries, and how to build a forgery attack with the same query complexity. The time complexity of these attacks is above \(2^n\), but it shows that the schemes do not reach full security in the information theoretic model. Surprisingly, our attack on LightMAC+ also invalidates a recent security proof by Naito.

Moreover, we give a variant of the attack against SUM-ECBC and GCM-SIV2 with time and data complexity \(\tilde{\mathcal {O}}(2^{6n/7})\). As far as we know, this is the first attack with complexity below \(2^n\) against a deterministic beyond-birthday-bound secure MAC.

As a side result, we also give a birthday attack against 1kf9, a single-key variant of 3kf9 that was withdrawn due to issues with the proof.

Keywords

Modes of operation Cryptanalysis Message authentication codes Beyond-birthday-bound security 

Notes

Acknowledgement

Mridul Nandi is supported by R.C.Bose Centre for Cryptology and Security.

Part of this work was supported by the French DGA.

Supplementary material

References

  1. 1.
    An, J.H., Bellare, M.: Constructing VIL-MACs from FIL-MACs: message authentication under weakened assumptions. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 252–269. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48405-1_16 CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-68697-5_1 CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Guérin, R., Rogaway, P.: XOR MACs: new methods for message authentication using finite pseudorandom functions. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 15–28. Springer, Heidelberg (1995).  https://doi.org/10.1007/3-540-44750-4_2 CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block chaining message authentication code. J. Comput. Syst. Sci. 61(3), 362–399 (2000)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Black, J., Rogaway, P.: A block-cipher mode of operation for parallelizable message authentication. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 384–397. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-46035-7_25 CrossRefGoogle Scholar
  6. 6.
    Chose, P., Joux, A., Mitton, M.: Fast correlation attacks: an algorithmic point of view. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 209–221. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-46035-7_14 CrossRefGoogle Scholar
  7. 7.
    Cogliati, B., Seurin, Y.: EWCDM: an efficient, beyond-birthday secure, nonce-misuse resistant MAC. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 121–149. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53018-4_5 CrossRefGoogle Scholar
  8. 8.
    Datta, N., Dutta, A., Nandi, M., Paul, G., Zhang, L.: Building single-key beyond birthday bound message authentication code. Cryptology ePrint Archive, Report 2015/958 (2015). http://eprint.iacr.org/2015/958
  9. 9.
    Datta, N., Dutta, A., Nandi, M., Paul, G., Zhang, L.: Single key variant of \(\rm {PMAC}\_\rm {Plus}\). IACR Trans. Symm. Cryptol. 2017(4), 268–305 (2017)Google Scholar
  10. 10.
    Dinur, I., Leurent, G.: Improved generic attacks against hash-based MACs and HAIFA. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 149–168. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44371-2_9 CrossRefGoogle Scholar
  11. 11.
    Dutta, A., Jha, A., Nandi, M.: Tight security analysis of EHtM MAC. IACR Trans. Symm. Cryptol. 2017(3), 130–150 (2017)Google Scholar
  12. 12.
    Ferguson, N.: Authentication weaknesses in GCM. Comment to NIST (2005). http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf
  13. 13.
    Computer data authentication: National Bureau of Standards, NIST FIPS PUB 113. U.S, Department of Commerce (1985)Google Scholar
  14. 14.
    Fuhr, T., Leurent, G., Suder, V.: Collision attacks against CAESAR candidates. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part II. LNCS, vol. 9453, pp. 510–532. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48800-3_21 CrossRefGoogle Scholar
  15. 15.
    Gilbert, E.N., MacWilliams, F.J., Sloane, N.J.: Codes which detect deception. Bell Labs Tech. J. 53(3), 405–424 (1974)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Guo, J., Peyrin, T., Sasaki, Y., Wang, L.: Updates on generic attacks against HMAC and NMAC. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 131–148. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44371-2_8 CrossRefGoogle Scholar
  17. 17.
    Iwata, T.: New blockcipher modes of operation with beyond the birthday bound security. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 310–327. Springer, Heidelberg (2006).  https://doi.org/10.1007/11799313_20 CrossRefGoogle Scholar
  18. 18.
    Iwata, T., Kurosawa, K.: OMAC: one-key CBC MAC. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-39887-5_11 CrossRefGoogle Scholar
  19. 19.
    Iwata, T., Mennink, B., Vizár, D.: CENC is optimally secure. Cryptology ePrint Archive, Report 2016/1087 (2016). http://eprint.iacr.org/2016/1087
  20. 20.
    Iwata, T., Minematsu, K.: Stronger security variants of GCM-SIV. IACR Trans. Symm. Cryptol. 2016(1), 134–157 (2016). http://tosc.iacr.org/index.php/ToSC/article/view/539
  21. 21.
    Iwata, T., Minematsu, K., Peyrin, T., Seurin, Y.: ZMAC: a fast tweakable block cipher mode for highly secure message authentication. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 34–65. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63697-9_2 CrossRefGoogle Scholar
  22. 22.
    Jaulmes, É., Joux, A., Valette, F.: On the security of randomized CBC-MAC beyond the birthday paradox limit a new construction. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 237–251. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45661-9_19 CrossRefGoogle Scholar
  23. 23.
    Joux, A.: Multicollisions in iterated hash functions. Application to cascaded constructions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28628-8_19 CrossRefzbMATHGoogle Scholar
  24. 24.
    Knudsen, L.R., Mitchell, C.J.: Analysis of 3GPP-MAC and two-key 3GPP-MAC. Discrete Appl. Math. 128(1), 181–191 (2003). http://www.sciencedirect.com/science/article/pii/S0166218X02004444. International Workshop on Coding and Cryptography (WCC 2001)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Lee, C., Kim, J., Sung, J., Hong, S., Lee, S.: Forgery and key recovery attacks on PMAC and Mitchell’s TMAC variant. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 421–431. Springer, Heidelberg (2006).  https://doi.org/10.1007/11780656_35 CrossRefzbMATHGoogle Scholar
  26. 26.
    Leurent, G., Peyrin, T., Wang, L.: New generic attacks against hash-based MACs. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 1–20. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-42045-0_1 CrossRefGoogle Scholar
  27. 27.
    List, E., Nandi, M.: Revisiting full-PRF-secure PMAC and using it for beyond-birthday authenticated encryption. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 258–274. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-52153-4_15 CrossRefGoogle Scholar
  28. 28.
    List, E., Nandi, M.: ZMAC\(^+\) - an efficient variable-output-length variant of ZMAC. IACR Trans. Symm. Cryptol. 2017(4), 306–325 (2017)Google Scholar
  29. 29.
    Luykx, A., Preneel, B., Tischhauser, E., Yasuda, K.: A MAC mode for lightweight block ciphers. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 43–59. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-52993-5_3 CrossRefGoogle Scholar
  30. 30.
    Mennink, B., Neves, S.: Encrypted Davies-Meyer and its dual: towards optimal security using mirror theory. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 556–583. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63697-9_19 CrossRefGoogle Scholar
  31. 31.
    Minematsu, K.: How to Thwart birthday attacks against MACs via small randomness. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 230–249. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13858-4_13 CrossRefGoogle Scholar
  32. 32.
    Naito, Y.: Full PRF-secure message authentication code based on tweakable block cipher. In: Au, M.-H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 167–182. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-26059-4_9 CrossRefGoogle Scholar
  33. 33.
    Naito, Y.: Blockcipher-based MACs: beyond the birthday bound without message length. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp. 446–470. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70700-6_16 CrossRefGoogle Scholar
  34. 34.
    Naito, Y.: Improved security bound of \(\rm {LightMAC}\_\rm {Plus}\) and its single-key variant. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 300–318. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-76953-0_16 CrossRefGoogle Scholar
  35. 35.
    Nikolić, I., Sasaki, Y.: Refinements of the k-tree algorithm for the generalized birthday problem. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part II. LNCS, vol. 9453, pp. 683–703. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48800-3_28 CrossRefGoogle Scholar
  36. 36.
    Peyrin, T., Wang, L.: Generic universal forgery attack on iterative hash-based MACs. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 147–164. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_9 CrossRefGoogle Scholar
  37. 37.
    Preneel, B., van Oorschot, P.C.: MDx-MAC and building fast MACs from hash functions. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 1–14. Springer, Heidelberg (1995).  https://doi.org/10.1007/3-540-44750-4_1 CrossRefGoogle Scholar
  38. 38.
    Preneel, B., van Oorschot, P.C.: On the security of two MAC algorithms. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 19–32. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-68339-9_3 CrossRefGoogle Scholar
  39. 39.
    Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 16–31. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30539-2_2 CrossRefGoogle Scholar
  40. 40.
    Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45708-9_19 CrossRefGoogle Scholar
  41. 41.
    Wegman, M.N., Carter, L.: New hash functions and their use in authentication and set equality. J. Comput. Syst. Sci. 22, 265–279 (1981)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Yasuda, K.: The sum of CBC MACs is a secure PRF. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 366–381. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-11925-5_25 CrossRefGoogle Scholar
  43. 43.
    Yasuda, K.: A new variant of PMAC: beyond the birthday bound. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 596–609. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22792-9_34 CrossRefGoogle Scholar
  44. 44.
    Zhang, L., Wu, W., Sui, H., Wang, P.: 3kf9: enhancing 3GPP-MAC beyond the birthday bound. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 296–312. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34961-4_19 CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2018

Authors and Affiliations

  1. 1.InriaParisFrance
  2. 2.Indian Statistical InstituteKolkataIndia

Personalised recommendations