Advertisement

Round-Optimal Secure Multi-Party Computation

  • Shai Halevi
  • Carmit Hazay
  • Antigoni Polychroniadou
  • Muthuramakrishnan Venkitasubramaniam
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10992)

Abstract

Secure multi-party computation (MPC) is a central cryptographic task that allows a set of mutually distrustful parties to jointly compute some function of their private inputs where security should hold in the presence of a malicious adversary that can corrupt any number of parties. Despite extensive research, the precise round complexity of this “standard-bearer” cryptographic primitive is unknown. Recently, Garg, Mukherjee, Pandey and Polychroniadou, in EUROCRYPT 2016 demonstrated that the round complexity of any MPC protocol relying on black-box proofs of security in the plain model must be at least four. Following this work, independently Ananth, Choudhuri and Jain, CRYPTO 2017 and Brakerski, Halevi, and Polychroniadou, TCC 2017 made progress towards solving this question and constructed four-round protocols based on non-polynomial time assumptions. More recently, Ciampi, Ostrovsky, Siniscalchi and Visconti in TCC 2017 closed the gap for two-party protocols by constructing a four-round protocol from polynomial-time assumptions. In another work, Ciampi, Ostrovsky, Siniscalchi and Visconti TCC 2017 showed how to design a four-round multi-party protocol for the specific case of multi-party coin-tossing.

In this work, we resolve this question by designing a four-round actively secure multi-party (two or more parties) protocol for general functionalities under standard polynomial-time hardness assumptions with a black-box proof of security.

Keywords

Secure multi-party computation Garbled circuits Round complexity Additive errors 

Notes

Acknowledgements

We thank the anonymous reviewers for their valuable feedback. Following Ananth et. al. [ACJ17], we would like to acknowledge Yuval Ishai’s contribution in the three-bit three-round multiplication protocol employed in this work. We would also like to thank Daniel Genkin, Yuval Ishai and Mor Weiss for several discussions on binary AMD resilient circuits.

The first author was supported by the Defense Advanced Research Projects Agency (DARPA) and Army Research Office(ARO) under Contract No. W911NF-15-C-0236. The second author was supported by the BIU Center for Research in Applied Cryptography and Cyber Security in conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office. The third author was supported by the National Science Foundation under Grant No. 1617676, 1526377 and 1618884, IBM under Agreement 4915013672 and the Packard Foundation under Grant 2015-63124. The last author was supported by the National Science Foundation under Grant No. 1526377 and 1618884, a Google Faculty Research grant and DIMACS Special Focus on Cryptography program. The work was partially done while the fourth author was at Cornell Tech.

The views expressed are those of the authors and do not reflect the official policy or position of the Department of Defense, the National Science Foundation, or the U.S. Government.

References

  1. [ACJ17]
    Ananth, P., Choudhuri, A.R., Jain, A.: A new approach to round-optimal secure multiparty computation. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 468–499. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_16CrossRefGoogle Scholar
  2. [AIK06]
    Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC\({}^{\text{0 }}\). SIAM J. Comput. 36(4), 845–888 (2006)MathSciNetCrossRefGoogle Scholar
  3. [AJL+12]
    Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_29CrossRefGoogle Scholar
  4. [BGJ+17]
    Badrinarayanan, S., Goyal, V., Jain, A., Khurana, D., Sahai, A.: Round optimal concurrent MPC via strong simulation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 743–775. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70500-2_25CrossRefGoogle Scholar
  5. [BGJ+18]
    Badrinarayanan, S., Goyal, V., Jain, A., Kalai, Y.T., Khurana, D., Sahai, A.: Promise zero knowledge and its applications to round optimal MPC (2018)Google Scholar
  6. [BGW88]
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: STOC, pp. 1–10 (1988)Google Scholar
  7. [BHP17]
    Brakerski, Z., Halevi, S., Polychroniadou, A.: Four round secure computation without setup. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 645–677. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70500-2_22CrossRefGoogle Scholar
  8. [BL18]
    Benhamouda, F., Lin, H.: k-round multiparty computation from k-round oblivious transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 500–532. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78375-8_17CrossRefGoogle Scholar
  9. [BMR90]
    Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols (extended abstract). In: STOC, pp. 503–513 (1990)Google Scholar
  10. [CCD87]
    Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (abstract). In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 462–462. Springer, Heidelberg (1988).  https://doi.org/10.1007/3-540-48184-2_43CrossRefGoogle Scholar
  11. [CDF+08]
    Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of algebraic manipulation with applications to robust secret sharing and fuzzy extractors. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 471–488. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78967-3_27CrossRefGoogle Scholar
  12. [CLOS02]
    Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: STOC, pp. 494–503 (2002)Google Scholar
  13. [COSV16]
    Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Concurrent non-malleable commitments (and more) in 3 rounds. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 270–299. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53015-3_10CrossRefMATHGoogle Scholar
  14. [COSV17a]
    Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Delayed-input non-malleable zero knowledge and multi-party coin tossing in four rounds. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 711–742. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70500-2_24CrossRefGoogle Scholar
  15. [COSV17b]
    Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Round-optimal secure two-party computation from trapdoor permutations. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 678–710. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70500-2_23CrossRefGoogle Scholar
  16. [DI05]
    Damgård, I., Ishai, Y.: Constant-round multiparty computation using a black-box pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 378–394. Springer, Heidelberg (2005).  https://doi.org/10.1007/11535218_23CrossRefGoogle Scholar
  17. [DI06]
    Damgård, I., Ishai, Y.: Scalable secure multiparty computation. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidelberg (2006).  https://doi.org/10.1007/11818175_30CrossRefGoogle Scholar
  18. [DN07]
    Dwork, C., Naor, M.: Zaps and their applications. SIAM J. Comput. 36(6), 1513–1543 (2007)MathSciNetCrossRefGoogle Scholar
  19. [GGHR14]
    Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54242-8_4CrossRefGoogle Scholar
  20. [GIP+14]
    Genkin, D., Ishai, Y., Prabhakaran, M., Sahai, A., Tromer, E.: Circuits resilient to additive attacks with applications to secure computation. In: STOC, pp. 495–504 (2014)Google Scholar
  21. [GIP15]
    Genkin, D., Ishai, Y., Polychroniadou, A.: Efficient multi-party computation: from passive to active security via secure SIMD circuits. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 721–741. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_35CrossRefGoogle Scholar
  22. [GIW16]
    Genkin, D., Ishai, Y., Weiss, M.: Binary AMD circuits from secure multiparty computation. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 336–366. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53641-4_14CrossRefGoogle Scholar
  23. [GMPP16]
    Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round complexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49896-5_16CrossRefGoogle Scholar
  24. [GMW87]
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A completeness theorem for protocols with honest majority. In: STOC, pp. 218–229 (1987)Google Scholar
  25. [Goy11]
    Goyal, V.: Constant round non-malleable protocols using one way functions. In: Proceedings of the 43rd ACM Symposium on Theory of Computing STOC 2011, San Jose, CA, USA, pp. 695–704, 6–8 June 2011 (2011)Google Scholar
  26. [GRRV14]
    Goyal, V., Richelson, S., Rosen, A., Vald, M.: An algebraic approach to non-malleability. In: FOCS, pp. 41–50 (2014)Google Scholar
  27. [GS17]
    Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal assumptions. IACR Cryptol. ePrint Archive 2017, 1156 (2017)MATHGoogle Scholar
  28. [HHPV17]
    Halevi, S., Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Round-optimal secure multi-party computation. IACR Cryptol. ePrint Archive 2017, 1056 (2017)Google Scholar
  29. [HIK+11]
    Haitner, I., Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions of protocols for secure computation. SIAM J. Comput. 40(2), 225–266 (2011)MathSciNetCrossRefGoogle Scholar
  30. [HPV16]
    Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Composable security in the tamper-proof hardware model under minimal complexity. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 367–399. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53641-4_15CrossRefGoogle Scholar
  31. [HSS17]
    Hazay, C., Scholl, P., Soria-Vazquez, E.: Low cost constant round MPC combining BMR and oblivious transfer. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 598–628. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70694-8_21CrossRefGoogle Scholar
  32. [Khu17]
    Khurana, D.: Round optimal concurrent non-malleability from polynomial hardness. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 139–171. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70503-3_5CrossRefGoogle Scholar
  33. [KOS03]
    Katz, J., Ostrovsky, R., Smith, A.: Round efficiency of multi-party computation with a dishonest majority. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 578–595. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-39200-9_36CrossRefGoogle Scholar
  34. [LP11]
    Lin, H., Pass, R.: Constant-round non-malleable commitments from any one-way function. In: STOC, pp. 705–714 (2011)Google Scholar
  35. [LPSY15]
    Lindell, Y., Pinkas, B., Smart, N.P., Yanai, A.: Efficient constant round multi-party computation combining BMR and SPDZ. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 319–338. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_16CrossRefGoogle Scholar
  36. [LPV12]
    Pass, R., Lin, H., Venkitasubramaniam, M.: A unified framework for UC from only OT. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 699–717. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34961-4_42CrossRefGoogle Scholar
  37. [MW16]
    Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 735–763. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49896-5_26CrossRefGoogle Scholar
  38. [OPP14]
    Ostrovsky, R., Paskin-Cherniavsky, A., Paskin-Cherniavsky, B.: Maliciously circuit-private FHE. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 536–553. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44371-2_30CrossRefGoogle Scholar
  39. [Pas04]
    Pass, R., Wee, H.: Constant-round non-malleable commitments from sub-exponential one-way functions. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 638–655. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13190-5_32CrossRefGoogle Scholar
  40. [PW10]
    Pass, R., Wee, H.: Constant-Round Non-malleable Commitments from Sub-exponential One-Way Functions. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 638–655. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  41. [Yao86]
    Yao, A.C.-C: How to generate and exchange secrets (extended abstract). In: FOCS, pp. 162–167 (1986)Google Scholar

Copyright information

© International Association for Cryptologic Research 2018

Authors and Affiliations

  • Shai Halevi
    • 1
  • Carmit Hazay
    • 2
  • Antigoni Polychroniadou
    • 3
  • Muthuramakrishnan Venkitasubramaniam
    • 4
  1. 1.IBM ResearchNew YorkUSA
  2. 2.Bar-Ilan UniversityRamat GanIsrael
  3. 3.Cornell Tech and University of RochesterNew YorkUSA
  4. 4.University of RochesterNew YorkUSA

Personalised recommendations