Advertisement

On Distributional Collision Resistant Hashing

  • Ilan Komargodski
  • Eylon Yogev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10992)

Abstract

Collision resistant hashing is a fundamental concept that is the basis for many of the important cryptographic primitives and protocols. Collision resistant hashing is a family of compressing functions such that no efficient adversary can find any collision given a random function in the family.

In this work we study a relaxation of collision resistance called distributional collision resistance, introduced by Dubrov and Ishai (STOC ’06). This relaxation of collision resistance only guarantees that no efficient adversary, given a random function in the family, can sample a pair (xy) where x is uniformly random and y is uniformly random conditioned on colliding with x.

Our first result shows that distributional collision resistance can be based on the existence of multi-collision resistance hash (with no additional assumptions). Multi-collision resistance is another relaxation of collision resistance which guarantees that an efficient adversary cannot find any tuple of \(k>2\) inputs that collide relative to a random function in the family. The construction is non-explicit, non-black-box, and yields an infinitely-often secure family. This partially resolves a question of Berman et al. (EUROCRYPT ’18). We further observe that in a black-box model such an implication (from multi-collision resistance to distributional collision resistance) does not exist.

Our second result is a construction of a distributional collision resistant hash from the average-case hardness of SZK. Previously, this assumption was not known to imply any form of collision resistance (other than the ones implied by one-way functions).

Notes

Acknowledgments

We thank the anonymous reviewers of CRYPTO 2018 for their elaborate and useful comments. We are grateful to Itay Berman and Ron Rothblum for explaining how to use triangular discrimination in the analysis in Theorem 2. We also thank Moni Naor and Rafael Pass for useful discussions.

References

  1. 1.
    Asharov, G., Segev, G.: Limits on the power of indistinguishability obfuscation and functional encryption. SIAM J. Comput. 45(6), 2117–2176 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd Annual Symposium on Foundations of Computer Science, FOCS, pp. 106–115 (2001)Google Scholar
  3. 3.
    Barak, B., Ong, S.J., Vadhan, S.P.: Derandomization in cryptography. SIAM J. Comput. 37(2), 380–400 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Beaver, D.: Correlated pseudorandomness and the complexity of private computations. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, pp. 479–488. ACM (1996)Google Scholar
  5. 5.
    Berman, I., Degwekar, A., Rothblum, R.D., Vasudevan, P.N.: Multi-collision resistant hash functions and their applications. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 133–161. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78375-8_5CrossRefGoogle Scholar
  6. 6.
    Bitansky, N., Degwekar, A., Vaikuntanathan, V.: Structure vs. hardness through the obfuscation lens. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 696–723. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_23CrossRefGoogle Scholar
  7. 7.
    Bitansky, N., Kalai, Y.T., Paneth, O.: Multi-collision resistance: a paradigm for keyless hash functions. IACR Cryptology ePrint Archive 2017, 488 (2017). (To appear in STOC 2018)Google Scholar
  8. 8.
    Bitansky, N., Nishimaki, R., Passelègue, A., Wichs, D.: From cryptomania to obfustopia through secret-key functional encryption. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 391–418. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53644-5_15CrossRefGoogle Scholar
  9. 9.
    Bogdanov, A., Lee, C.H.: Limits of provable security for homomorphic encryption. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 111–128. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40041-4_7CrossRefGoogle Scholar
  10. 10.
    Brakerski, Z., Komargodski, I., Segev, G.: Multi-input functional encryption in the private-key setting: stronger security from weaker assumptions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 852–880. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49896-5_30CrossRefMATHGoogle Scholar
  11. 11.
    Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assumption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 537–569. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_18CrossRefGoogle Scholar
  12. 12.
    Dubrov, B., Ishai, Y.: On the randomness complexity of efficient sampling. In: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pp. 711–720. ACM (2006)Google Scholar
  13. 13.
    Dvir, Z., Gutfreund, D., Rothblum, G.N., Vadhan, S.P.: On approximating the entropy of polynomial mappings. In: Innovations in Computer Science - ICS, pp. 460–475 (2011)Google Scholar
  14. 14.
    Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct pcps for NP. J. Comput. Syst. Sci. 77(1), 91–106 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Garg, S., Mahmoody, M., Mohammed, A.: Lower bounds on obfuscation from all-or-nothing encryption primitives. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 661–695. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_22CrossRefGoogle Scholar
  16. 16.
    Goldreich, O., Sahai, A., Vadhan, S.: Can statistical zero knowledge be made non-interactive? Or on the relationship of SZK and NISZK. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 467–484. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48405-1_30CrossRefGoogle Scholar
  17. 17.
    Goldreich, O., Vadhan, S.P.: Comparing entropies in statistical zero knowledge with applications to the structure of SZK. In: Proceedings of the 14th Annual IEEE Conference on Computational Complexity, p. 54. IEEE Computer Society (1999)Google Scholar
  18. 18.
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Harnik, D., Naor, M.: On the compressibility of NP instances and cryptographic applications. SIAM J. Comput. 39(5), 1667–1713 (2010)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Impagliazzo, R., Luby, M.: One-way functions are essential for complexity based cryptography (extended abstract). In: 30th Annual Symposium on Foundations of Computer Science, FOCS, pp. 230–235. IEEE Computer Society (1989)Google Scholar
  21. 21.
    Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: Proceedings of the 21st Annual ACM Symposium on Theory of Computing, 14–17 May 1989, Seattle, Washigton, USA, pp. 44–61. ACM (1989)Google Scholar
  22. 22.
    Komargodski, I., Naor, M., Yogev, E.: White-box vs. black-box complexity of search problems: ramsey and graph property testing. In: 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS, pp. 622–632 (2017)Google Scholar
  23. 23.
    Komargodski, I., Naor, M., Yogev, E.: Collision resistant hashing for paranoids: dealing with multiple collisions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 162–194. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78375-8_6CrossRefGoogle Scholar
  24. 24.
    Komargodski, I., Segev, G.: From minicrypt to obfustopia via private-key functional encryption. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 122–151. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56620-7_5CrossRefGoogle Scholar
  25. 25.
    Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 28–57. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49890-3_2CrossRefGoogle Scholar
  26. 26.
    Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 599–629. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_20CrossRefGoogle Scholar
  27. 27.
    Lin, H., Tessaro, S.: Indistinguishability obfuscation from trilinear maps and block-wise local PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 630–660. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_21CrossRefGoogle Scholar
  28. 28.
    Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like assumptions on constant-degree graded encodings. In: IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS, pp. 11–20. IEEE Computer Society (2016)Google Scholar
  29. 29.
    Liu, T., Vaikuntanathan, V.: On basing private information retrieval on NP-hardness. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 372–386. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49096-9_16CrossRefGoogle Scholar
  30. 30.
    Mahmoody, M., Mohammed, A., Nematihaji, S., Pass, R., Shelat, A.: Lower bounds on assumptions behind indistinguishability obfuscation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 49–66. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49096-9_3CrossRefGoogle Scholar
  31. 31.
    Mahmoody, M., Pass, R.: The curious case of non-interactive commitments – on the power of black-box vs. non-black-box use of primitives. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 701–718. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_41CrossRefGoogle Scholar
  32. 32.
    Ostrovsky, R.: One-way functions, hard on average problems, and statistical zero-knowledge proofs. In: Structure in Complexity Theory Conference, pp. 133–138. IEEE Computer Society (1991)Google Scholar
  33. 33.
    Sahai, A., Vadhan, S.P.: A complete problem for statistical zero knowledge. J. ACM 50(2), 196–249 (2003)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Simon, D.R.: Finding collisions on a one-way street: can secure hash functions be based on general assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 334–345. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0054137CrossRefGoogle Scholar
  35. 35.
    Topsøe, F.: Some inequalities for information divergence and related measures of discrimination. IEEE Trans. Inf. Theory 46(4), 1602–1609 (2000). https://doi.org/10.1109/18.850703MathSciNetCrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2018

Authors and Affiliations

  1. 1.Cornell TechNew YorkUSA
  2. 2.Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations