Advertisement

Cryptanalyses of Branching Program Obfuscations over GGH13 Multilinear Map from the NTRU Problem

  • Jung Hee Cheon
  • Minki Hhan
  • Jiseung Kim
  • Changmin Lee
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10993)

Abstract

In this paper, we propose cryptanalyses of all existing indistinguishability obfuscation (iO) candidates based on branching programs (BP) over GGH13 multilinear map for all recommended parameter settings. To achieve this, we introduce two novel techniques, program converting using NTRU-solver and matrix zeroizing, which can be applied to a wide range of obfuscation constructions and BPs compared to previous attacks. We then prove that, for the suggested parameters, the existing general-purpose BP obfuscations over GGH13 do not have the desired security. Especially, the first candidate indistinguishability obfuscation with input-unpartitionable branching programs (FOCS 2013) and the recent BP obfuscation (TCC 2016) are not secure against our attack when they use the GGH13 with recommended parameters. Previously, there has been no known polynomial time attack for these cases.

Our attack shows that the lattice dimension of GGH13 must be set much larger than previous thought in order to maintain security. More precisely, the underlying lattice dimension of GGH13 should be set to \(n=\tilde{\varTheta }( \kappa ^2 \lambda )\) to rule out attacks from the subfield algorithm for NTRU where \(\kappa \) is the multilinearity level and \(\lambda \) the security parameter.

Keywords

Obfuscations Multilinear maps Graded encoding schemes NTRU 

Notes

Acknowledgement

We sincerely thank the anonymous reviewers of Crypto 2018 for their fruitful comments. This work was supported by Institute for Information & communication Technology Promotion (IITP) grant funded by the Korea government (MSIT) (No. 2016-6-00598, The mathematical structure of functional encryption and its analysis) and was based upon work supported by the ARO and DARPA under Contract No. W911NF-15-C-0227.

Supplementary material

References

  1. 1.
    Albrecht, M., Bai, S., Ducas, L.: A subfield lattice attack on overstretched NTRU assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 153–178. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53018-4_6CrossRefGoogle Scholar
  2. 2.
    Albrecht, M.R., Cocis, C., Laguillaumie, F., Langlois, A.: Implementing candidate graded encoding schemes from ideal lattices. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 752–775. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48800-3_31CrossRefGoogle Scholar
  3. 3.
    Prabhanjan, A., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: avoiding Barrington’s theorem. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, pp. 646–658. ACM (2014)Google Scholar
  4. 4.
    Apon, D., Döttling, N., Garg, S., Mukherjee, P.: Cryptanalysis of indistinguishability obfuscations of circuits over GGH13. In: LIPIcs-Leibniz International Proceedings in Informatics, vol. 80. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)Google Scholar
  5. 5.
    Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order graded encoding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 528–556. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46497-7_21CrossRefGoogle Scholar
  6. 6.
    Badrinarayanan, S., Miles, E., Sahai, A., Zhandry, M.: Post-zeroizing obfuscation: new mathematical tools, and the case of evasive circuits. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 764–791. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49896-5_27CrossRefGoogle Scholar
  7. 7.
    Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_13CrossRefGoogle Scholar
  8. 8.
    Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44647-8_1CrossRefGoogle Scholar
  9. 9.
    Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang, K.: On the (im)possibility of obfuscating programs. J. ACM (JACM) 59(2), 6 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Barrington, D.A.: Bounded-width polynomial-size branching programs recognize exactly those languages in NC 1. In: Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing, pp. 1–5. ACM (1986)Google Scholar
  11. 11.
    Ben-Or, M., Cleve, R.: Computing algebraic formulas using a constant number of registers. In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing, pp. 254–257 (1988)Google Scholar
  12. 12.
    Biasse, J.-F.: Subexponential time relations in the class group of large degree number fields. Adv. Math. Commun. 8(4), 407–425 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Biasse, J.-F., Espitau, T., Fouque, P.-A., Gélin, A., Kirchner, P.: Computing generator in cyclotomic integer rings. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 60–88. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56620-7_3CrossRefMATHGoogle Scholar
  14. 14.
    Biasse, J.-F., Song, F.: Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 893–902. SIAM (2016)Google Scholar
  15. 15.
    Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 1–25. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54242-8_1CrossRefGoogle Scholar
  16. 16.
    Chen, Y., Gentry, C., Halevi, S.: Cryptanalyses of candidate branching program obfuscators. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 278–307. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56617-7_10CrossRefGoogle Scholar
  17. 17.
    Cheon, J.H., Hhan, M., Lee, C.: Cryptanalysis of the overstretched NTRU problem for general modulus polynomial. IACR Cryptology ePrint Archive, 2017:484 (2017)Google Scholar
  18. 18.
    Cheon, J.H., Jeong, J., Lee, C.: An algorithm for NTRU problems and cryptanalysis of the GGH multilinear map without a low-level encoding of zero. LMS J. Comput. Math. 19(A), 255–266 (2016)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40041-4_26CrossRefGoogle Scholar
  20. 20.
    Cramer, R., Ducas, L., Peikert, C., Regev, O.: Recovering short generators of principal ideals in cyclotomic rings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 559–585. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49896-5_20CrossRefMATHGoogle Scholar
  21. 21.
    Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78967-3_3CrossRefGoogle Scholar
  22. 22.
    Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38348-9_1CrossRefGoogle Scholar
  23. 23.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: Proceedings of the 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pp. 40–49. IEEE Computer Society (2013)Google Scholar
  24. 24.
    Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure obfuscation in a weak multilinear map model. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 241–268. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53644-5_10CrossRefGoogle Scholar
  25. 25.
    Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lattices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 498–527. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46497-7_20CrossRefGoogle Scholar
  26. 26.
    Kirchner, P., Fouque, P.-A.: Revisiting lattice attacks on overstretched NTRU parameters. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 3–26. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56620-7_1CrossRefGoogle Scholar
  27. 27.
    Langlois, A., Stehlé, D., Steinfeld, R.: GGHLite: more efficient multilinear maps from ideal lattices. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 239–256. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_14CrossRefGoogle Scholar
  28. 28.
    Lewi, K., Malozemoff, A.J., Apon, D., Carmer, B., Foltzer, A., Wagner, D., Archer, D.W., Boneh, D., Katz, J., Raykova, M.: 5Gen: a framework for prototyping applications using multilinear maps and matrix branching programs. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 981–992. ACM (2016)Google Scholar
  29. 29.
    Ma, F., Zhandry, M.: The MMAP strikes back: obfuscation and new multilinear maps immune to CLT13 Zeroizing attacks. Cryptology ePrint Archive, Report 2017/946 (2017). https://eprint.iacr.org/2017/946
  30. 30.
    Miles, E., Sahai, A., Weiss, M.: Protecting obfuscation against arithmetic attacks. IACR Cryptology ePrint Archive, 2014:878 (2014)Google Scholar
  31. 31.
    Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: cryptanalysis of indistinguishability obfuscation over GGH13. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 629–658. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53008-5_22CrossRefGoogle Scholar
  32. 32.
    Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44371-2_28CrossRefGoogle Scholar
  33. 33.
    Sahai, A., Zhandry, M.: Obfuscating low-rank matrix branching programs. IACR Cryptology ePrint Archive, 2014:773 (2014)Google Scholar
  34. 34.
    Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 439–467. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46803-6_15CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2018

Authors and Affiliations

  • Jung Hee Cheon
    • 1
  • Minki Hhan
    • 1
  • Jiseung Kim
    • 1
  • Changmin Lee
    • 1
  1. 1.Seoul National UniversitySeoulRepublic of Korea

Personalised recommendations