Advertisement

On the Complexity of Compressing Obfuscation

  • Gilad Asharov
  • Naomi Ephraim
  • Ilan Komargodski
  • Rafael Pass
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10993)

Abstract

Indistinguishability obfuscation has become one of the most exciting cryptographic primitives due to its far reaching applications in cryptography and other fields. However, to date, obtaining a plausibly secure construction has been an illusive task, thus motivating the study of seemingly weaker primitives that imply it, with the possibility that they will be easier to construct.

In this work, we provide a systematic study of compressing obfuscation, one of the most natural and simple to describe primitives that is known to imply indistinguishability obfuscation when combined with other standard assumptions. A compressing obfuscator is roughly an indistinguishability obfuscator that outputs just a slightly compressed encoding of the truth table. This generalizes notions introduced by Lin et al. (PKC 2016) and Bitansky et al. (TCC 2016) by allowing for a broader regime of parameters.

We view compressing obfuscation as an independent cryptographic primitive and show various positive and negative results concerning its power and plausibility of existence, demonstrating significant differences from full-fledged indistinguishability obfuscation.

First, we show that as a cryptographic building block, compressing obfuscation is weak. In particular, when combined with one-way functions, it cannot be used (in a black-box way) to achieve public-key encryption, even under (sub-)exponential security assumptions. This is in sharp contrast to indistinguishability obfuscation, which together with one-way functions implies almost all cryptographic primitives.

Second, we show that to construct compressing obfuscation with perfect correctness, one only needs to assume its existence with a very weak correctness guarantee and polynomial hardness. Namely, we show a correctness amplification transformation with optimal parameters that relies only on polynomial hardness assumptions. This implies a universal construction assuming only polynomially secure compressing obfuscation with approximate correctness. In the context of indistinguishability obfuscation, we know how to achieve such a result only under sub-exponential security assumptions together with derandomization assumptions.

Lastly, we characterize the existence of compressing obfuscation with statistical security. We show that in some range of parameters and for some classes of circuits such an obfuscator exists, whereas it is unlikely to exist with better parameters or for larger classes of circuits. These positive and negative results reveal a deep connection between compressing obfuscation and various concepts in complexity theory and learning theory.

Notes

Acknowledgments

We thank Zvika Brakerski for discussions about the possibility of SXiO and XiO with statistical security.

References

  1. 1.
    Ananth, P., Jain, A., Naor, M., Sahai, A., Yogev, E.: Universal constructions and robust combiners for indistinguishability obfuscation and witness encryption. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 491–520. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53008-5_17CrossRefGoogle Scholar
  2. 2.
    Ananth, P., Jain, A., Sahai, A.: Robust transforming combiners from indistinguishability obfuscation to functional encryption. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 91–121. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56620-7_4CrossRefGoogle Scholar
  3. 3.
    Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 308–326. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-47989-6_15CrossRefGoogle Scholar
  4. 4.
    Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indistinguishability obfuscation from degree-5 multilinear maps. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 152–181. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56620-7_6CrossRefGoogle Scholar
  5. 5.
    Ananth, P.V., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: avoiding Barrington’s theorem. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, pp. 646–658 (2014)Google Scholar
  6. 6.
    Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319–342 (1987)MathSciNetGoogle Scholar
  7. 7.
    Apon, D., Döttling, N., Garg, S., Mukherjee, P.: Cryptanalysis of indistinguishability obfuscations of circuits over GGH13. In: 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, pp. 38:1–38:16 (2017)Google Scholar
  8. 8.
    Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order graded encoding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 528–556. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46497-7_21CrossRefGoogle Scholar
  9. 9.
    Asharov, G., Segev, G.: Limits on the power of indistinguishability obfuscation and functional encryption. SIAM J. Comput. 45(6), 2117–2176 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Asharov, G., Segev, G.: On constructing one-way permutations from indistinguishability obfuscation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 512–541. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49099-0_19CrossRefMATHGoogle Scholar
  11. 11.
    Asmuth, C., Blakley, G.: An efficient algorithm for constructing a cryptosystem which is harder to break than two other cryptosystems. Comput. Math. Appl. 7(6), 447–450 (1981)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Barak, B., Brakerski, Z., Komargodski, I., Kothari, P.K.: Limits on low-degree pseudorandom generators (or: sum-of-squares meets program obfuscation). IACR Cryptology ePrint Archive 2017, 312 (2017)Google Scholar
  13. 13.
    Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_13CrossRefGoogle Scholar
  14. 14.
    Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6:1–6:48 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Bitansky, N., Degwekar, A., Vaikuntanathan, V.: Structure vs. hardness through the obfuscation lens. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 696–723. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_23CrossRefGoogle Scholar
  16. 16.
    Bitansky, N., Lin, H., Paneth, O.: On removing graded encodings from functional encryption. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Proceedings, Part II. LNCS, vol. 10211, pp. 3–29. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56614-6_1CrossRefGoogle Scholar
  17. 17.
    Bitansky, N., Nishimaki, R., Passelègue, A., Wichs, D.: From cryptomania to obfustopia through secret-key functional encryption. In: Theory of Cryptography Conference, pp. 391–418 (2016)CrossRefGoogle Scholar
  18. 18.
    Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistinguishability from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 401–427. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46497-7_16CrossRefMATHGoogle Scholar
  19. 19.
    Bitansky, N., Paneth, O., Wichs, D.: Perfect structure on the edge of chaos - trapdoor permutations from indistinguishability obfuscation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 474–502. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49096-9_20CrossRefMATHGoogle Scholar
  20. 20.
    Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional encryption. In: IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, pp. 171–190 (2015)Google Scholar
  21. 21.
    Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation: from approximate to exact. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 67–95. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49096-9_4CrossRefGoogle Scholar
  22. 22.
    Bitansky, N., Vaikuntanathan, V.: A note on perfect correctness by derandomization. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 592–606. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56614-6_20CrossRefGoogle Scholar
  23. 23.
    Boneh, D., Wu, D.J., Zimmerman, J.: Immunizing multilinear maps against zeroizing attacks. IACR Cryptology ePrint Archive 2014, 930 (2014)Google Scholar
  24. 24.
    Brakerski, Z., Brzuska, C., Fleischhacker, N.: On statistically secure obfuscation with approximate correctness. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 551–578. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53008-5_19CrossRefGoogle Scholar
  25. 25.
    Brakerski, Z., Jain, A., Komargodski, I., Passelègue, A., Wichs, D.: Non-trivial witness encryption and null-iO from standard assumptions. IACR Cryptology ePrint Archive 2017, 874 (2017)Google Scholar
  26. 26.
    Brakerski, Z., Katz, J., Segev, G., Yerukhimovich, A.: Limits on the power of zero-knowledge proofs in cryptographic constructions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 559–578. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19571-6_34CrossRefMATHGoogle Scholar
  27. 27.
    Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 1–25. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54242-8_1CrossRefGoogle Scholar
  28. 28.
    Bshouty, N.H., Tamon, C.: On the fourier spectrum of monotone functions. J. ACM 43(4), 747–770 (1996)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Carmosino, M.L., Impagliazzo, R., Kabanets, V., Kolokolova, A.: Learning algorithms from natural proofs. In: 31st Conference on Computational Complexity, CCC 2016, vol. 50, pp. 10:1–10:24 (2016)Google Scholar
  30. 30.
    Carmosino, M.L., Impagliazzo, R., Kabanets, V., Kolokolova, A.: Agnostic learning from tolerant natural proofs. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2017, vol. 81, pp. 35:1–35:19 (2017)Google Scholar
  31. 31.
    Chen, R., Kabanets, V., Kolokolova, A., Shaltiel, R., Zuckerman, D.: Mining circuit lower bound proofs for meta-algorithms. Comput. Complex. 24(2), 333–392 (2015)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Chen, Y., Gentry, C., Halevi, S.: Cryptanalyses of candidate branching program obfuscators. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 278–307. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56617-7_10CrossRefGoogle Scholar
  33. 33.
    Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46800-5_1CrossRefGoogle Scholar
  34. 34.
    Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40041-4_26CrossRefGoogle Scholar
  35. 35.
    Coron, J.-S., Lepoint, T., Tibouchi, M.: New multilinear maps over the integers. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 267–286. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-47989-6_13CrossRefGoogle Scholar
  36. 36.
    Diffie, W., Hellman, M.E.: Multiuser cryptographic techniques. In: American Federation of Information Processing Societies, pp. 109–112 (1976)Google Scholar
  37. 37.
    Fischlin, M., Herzberg, A., Bin-Noon, H., Shulman, H.: Obfuscation combiners. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 521–550. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53008-5_18CrossRefGoogle Scholar
  38. 38.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, pp. 40–49. IEEE Computer Society (2013)Google Scholar
  39. 39.
    Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications. In: Symposium on Theory of Computing Conference, STOC 2013, pp. 467–476 (2013)Google Scholar
  40. 40.
    Garg, S., Mahmoody, M., Mohammed, A.: Lower bounds on obfuscation from all-or-nothing encryption primitives. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 661–695. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_22CrossRefGoogle Scholar
  41. 41.
    Garg, S., Mahmoody, M., Mohammed, A.: When does functional encryption imply obfuscation? In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 82–115. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70500-2_4CrossRefGoogle Scholar
  42. 42.
    Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lattices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 498–527. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46497-7_20CrossRefGoogle Scholar
  43. 43.
    Gentry, C., Halevi, S., Maji, H.K., Sahai, A.: Zeroizing without zeroes: cryptanalyzing multilinear maps without encodings of zero. IACR Cryptology ePrint Archive 2014, 929 (2014)Google Scholar
  44. 44.
    Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability obfuscation from the multilinear subgroup elimination assumption. In: IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, pp. 151–170 (2015)Google Scholar
  45. 45.
    Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_32CrossRefGoogle Scholar
  46. 46.
    Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled circuits and succinct functional encryption. In: Symposium on Theory of Computing Conference, STOC 2013, pp. 555–564 (2013)Google Scholar
  47. 47.
    Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-70936-7_11CrossRefGoogle Scholar
  48. 48.
    Harnik, D., Kilian, J., Naor, M., Reingold, O., Rosen, A.: On robust combiners for oblivious transfer and other primitives. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 96–113. Springer, Heidelberg (2005).  https://doi.org/10.1007/11426639_6CrossRefGoogle Scholar
  49. 49.
    Herzberg, A.: On tolerant cryptographic constructions. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 172–190. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-30574-3_13CrossRefGoogle Scholar
  50. 50.
    Herzberg, A.: Folklore, practice and theory of robust combiners. J. Comput. Secur. 17(2), 159–189 (2009)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, pp. 44–61. ACM (1989)Google Scholar
  52. 52.
    Kearns, M.J., Schapire, R.E., Sellie, L.: Toward efficient agnostic learning. Mach. Learn. 17(2–3), 115–141 (1994)MATHGoogle Scholar
  53. 53.
    Komargodski, I., Moran, T., Naor, M., Pass, R., Rosen, A., Yogev, E.: One-way functions and (im)perfect obfuscation. In: 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, pp. 374–383 (2014)Google Scholar
  54. 54.
    Levin, L.A.: One-way functions and pseudorandom generators. Combinatorica 7(4), 357–363 (1987)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 28–57. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49890-3_2CrossRefGoogle Scholar
  56. 56.
    Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 599–629. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_20CrossRefGoogle Scholar
  57. 57.
    Lin, H., Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation with non-trivial efficiency. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9615, pp. 447–462. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49387-8_17CrossRefGoogle Scholar
  58. 58.
    Lin, H., Pass, R., Seth, K., Telang, S.: Output-compressing randomized encodings and applications. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016-A. LNCS, vol. 9562, pp. 96–124. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49096-9_5CrossRefGoogle Scholar
  59. 59.
    Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like assumptions on constant-degree graded encodings. In: IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, pp. 11–20 (2016)Google Scholar
  60. 60.
    Linial, N., Mansour, Y., Nisan, N.: Constant depth circuits, Fourier transform, and learnability. In: 30th Annual Symposium on Foundations of Computer Science, pp. 574–579 (1989)Google Scholar
  61. 61.
    Liu, Q., Zhandry, M.: Decomposable obfuscation: a framework for building applications of obfuscation from polynomial hardness. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 138–169. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70500-2_6CrossRefMATHGoogle Scholar
  62. 62.
    Lombardi, A., Vaikuntanathan, V.: Limits on the locality of pseudorandom generators and applications to indistinguishability obfuscation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 119–137. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70500-2_5CrossRefMATHGoogle Scholar
  63. 63.
    Mahmoody, M., Mohammed, A., Nematihaji, S., Pass, R., Shelat, A.: Lower bounds on assumptions behind indistinguishability obfuscation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016-A. LNCS, vol. 9562, pp. 49–66. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49096-9_3CrossRefGoogle Scholar
  64. 64.
    Mahmoody, M., Xiao, D.: On the power of randomized reductions and the checkability of SAT. In: CCC 2010, pp. 64–75. IEEE Computer Society (2010)Google Scholar
  65. 65.
    Micali, S., Peikert, C., Sudan, M., Wilson, D.A.: Optimal error correction against computationally bounded noise. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 1–16. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-30576-7_1CrossRefGoogle Scholar
  66. 66.
    Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: cryptanalysis of indistinguishability obfuscation over GGH13. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 629–658. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53008-5_22CrossRefGoogle Scholar
  67. 67.
    Okamoto, T.: On relationships between statistical zero-knowledge proofs. J. Comput. Syst. Sci. 60(1), 47–108 (2000)MathSciNetCrossRefGoogle Scholar
  68. 68.
    Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44371-2_28CrossRefGoogle Scholar
  69. 69.
    Razborov, A.A., Rudich, S.: Natural proofs. J. Comput. Syst. Sci. 55(1), 24–35 (1997)MathSciNetCrossRefGoogle Scholar
  70. 70.
    Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: Symposium on Theory of Computing, STOC 2014, pp. 475–484 (2014)Google Scholar
  71. 71.
    Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)CrossRefGoogle Scholar
  72. 72.
    Williams, R.R.: Strong ETH breaks with Merlin and Arthur: short non-interactive proofs of batch evaluation. In: CCC, vol. 50, pp. 2:1–2:17 (2016)Google Scholar
  73. 73.
    Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 439–467. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46803-6_15CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2018

Authors and Affiliations

  • Gilad Asharov
    • 1
  • Naomi Ephraim
    • 2
  • Ilan Komargodski
    • 1
  • Rafael Pass
    • 1
  1. 1.Cornell TechNew YorkUSA
  2. 2.Cornell UniversityIthacaUSA

Personalised recommendations