Advertisement

Non-Malleable Codes for Partial Functions with Manipulation Detection

  • Aggelos Kiayias
  • Feng-Hao Liu
  • Yiannis Tselekounis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10993)

Abstract

Non-malleable codes were introduced by Dziembowski, Pietrzak and Wichs (ICS ’10) and its main application is the protection of cryptographic devices against tampering attacks on memory. In this work, we initiate a comprehensive study on non-malleable codes for the class of partial functions, that read/write on an arbitrary subset of codeword bits with specific cardinality. Our constructions are efficient in terms of information rate, while allowing the attacker to access asymptotically almost the entire codeword. In addition, they satisfy a notion which is stronger than non-malleability, that we call non-malleability with manipulation detection, guaranteeing that any modified codeword decodes to either the original message or to \(\bot \). Finally, our primitive implies All-Or-Nothing Transforms (AONTs) and as a result our constructions yield efficient AONTs under standard assumptions (only one-way functions), which, to the best of our knowledge, was an open question until now. In addition to this, we present a number of additional applications of our primitive in tamper resilience.

References

  1. 1.
    Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Optimal computational split-state non-malleable codes. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 393–417. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49099-0_15CrossRefGoogle Scholar
  2. 2.
    Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions and applications. In: STOC, pp. 459–468 (2015)Google Scholar
  3. 3.
    Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combinatorics. In: STOC, pp. 774–783 (2014)Google Scholar
  4. 4.
    Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Explicit non-malleable codes against bit-wise tampering and permutations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 538–557. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-47989-6_26CrossRefGoogle Scholar
  5. 5.
    Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: A rate-optimizing compiler for non-malleable codes against bit-wise tampering and permutations. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 375–397. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46494-6_16CrossRefGoogle Scholar
  6. 6.
    Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes for bounded depth, bounded fan-in circuits. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 881–908. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49896-5_31CrossRefzbMATHGoogle Scholar
  7. 7.
    Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes from average-case hardness: \({\sf A\sf {\sf C}}^0\), decision trees, and streaming space-bounded tampering. Cryptology ePrint Archive, Report 2017/1061 (2017)Google Scholar
  8. 8.
    Bao, F., Deng, R.H., Han, Y., Jeng, A., Narasimhalu, A.D., Ngair, T.: Breaking public key cryptosystems on tamper resistant devices in the presence of transient faults. In: Christianson, B., Crispo, B., Lomas, M., Roe, M. (eds.) Security Protocols 1997. LNCS, vol. 1361, pp. 115–124. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0028164CrossRefGoogle Scholar
  9. 9.
    Bellare, M., Tessaro, S., Vardy, A.: Semantic security for the wiretap channel. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 294–311. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_18CrossRefGoogle Scholar
  10. 10.
    Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997).  https://doi.org/10.1007/BFb0052259CrossRefGoogle Scholar
  11. 11.
    Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryptographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997).  https://doi.org/10.1007/3-540-69053-0_4CrossRefGoogle Scholar
  12. 12.
    Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of eliminating errors in cryptographic computations. J. Cryptol. 14(2), 101–119 (2001)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Boyko, V.: On the security properties of OAEP as an all-or-nothing transform. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 503–518. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48405-1_32CrossRefGoogle Scholar
  14. 14.
    Canetti, R., Dodis, Y., Halevi, S., Kushilevitz, E., Sahai, A.: Exposure-resilient functions and all-or-nothing transforms. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 453–469. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-45539-6_33CrossRefGoogle Scholar
  15. 15.
    Chandran, N., Goyal, V., Mukherjee, P., Pandey, O., Upadhyay, J.: Block-wise non-malleable codes. IACR Cryptology ePrint Archive, p. 129 (2015)Google Scholar
  16. 16.
    Chandran, N., Kanukurthi, B., Raghuraman, S.: Information-theoretic local non-malleable codes and their applications. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016-A. LNCS, vol. 9563, pp. 367–392. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49099-0_14CrossRefGoogle Scholar
  17. 17.
    Chattopadhyay, E., Zuckerman, D.: Non-malleable codes against constant split-state tampering. In: FOCS, pp. 306–315 (2014)Google Scholar
  18. 18.
    Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. In: ITCS 2014 (2014)Google Scholar
  19. 19.
    Choi, S.G., Kiayias, A., Malkin, T.: BiTR: built-in tamper resilience. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 740–758. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25385-0_40CrossRefzbMATHGoogle Scholar
  20. 20.
    Coretti, S., Maurer, U., Tackmann, B., Venturi, D.: From single-bit to multi-bit public-key encryption via non-malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 532–560. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46494-6_22CrossRefGoogle Scholar
  21. 21.
    Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of algebraic manipulation with applications to robust secret sharing and fuzzy extractors. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 471–488. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78967-3_27CrossRefGoogle Scholar
  22. 22.
    Dachman-Soled, D., Kulkarni, M., Shahverdi, A.: Locally decodable and updatable non-malleable codes in the bounded retrieval model. Cryptology ePrint Archive, Report 2017/303 (2017). http://eprint.iacr.org/2017/303
  23. 23.
    Dachman-Soled, D., Kulkarni, M., Shahverdi, A.: Tight upper and lower bounds for leakage-resilient, locally decodable and updatable non-malleable codes. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 310–332. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54365-8_13CrossRefGoogle Scholar
  24. 24.
    Dachman-Soled, D., Liu, F.-H., Shi, E., Zhou, H.-S.: Locally decodable and updatable non-malleable codes and their applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 427–450. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46494-6_18CrossRefGoogle Scholar
  25. 25.
    Döttling, N., Nielsen, J.B., Obremski, M.: Information theoretic continuously non-malleable codes in the constant split-state model. Cryptology ePrint Archive, Report 2017/357 (2017). http://eprint.iacr.org/2017/357
  26. 26.
    Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 239–257. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_14CrossRefGoogle Scholar
  27. 27.
    Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: ICS (2010)Google Scholar
  28. 28.
    Faonio, A., Nielsen, J.B.: Non-malleable codes with split-state refresh. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 279–309. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54365-8_12CrossRefGoogle Scholar
  29. 29.
    Faust, S., Hostáková, K., Mukherjee, P., Venturi, D.: Non-malleable codes for space-bounded tampering. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 95–126. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63715-0_4CrossRefGoogle Scholar
  30. 30.
    Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 465–488. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54242-8_20CrossRefGoogle Scholar
  31. 31.
    Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: A tamper and leakage resilient von neumann architecture. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 579–603. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46447-2_26CrossRefGoogle Scholar
  32. 32.
    Faust, S., Mukherjee, P., Venturi, D., Wichs, D.: Efficient non-malleable codes and key-derivation for poly-size tampering circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 111–128. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_7CrossRefGoogle Scholar
  33. 33.
    Genkin, D., Ishai, Y., Prabhakaran, M.M., Sahai, A., Tromer, E.: Circuits resilient to additive attacks with applications to secure computation. In: STOC 2014, pp. 495–504 (2014)Google Scholar
  34. 34.
    Jafargholi, Z., Wichs, D.: Tamper detection and continuous non-malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 451–480. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46494-6_19CrossRefGoogle Scholar
  35. 35.
    Katz, J., Lindell, Y.: Introduction to Modern Cryptography (2007)Google Scholar
  36. 36.
    Kiayias, A., Liu, F.-H., Tselekounis, Y.: Practical non-malleable codes from l-more extractable hash functions. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, CCS 2016, pp. 1317–1328. ACM, New York (2016)Google Scholar
  37. 37.
    Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–532. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_30CrossRefGoogle Scholar
  38. 38.
    Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24638-1_16CrossRefzbMATHGoogle Scholar
  39. 39.
    Ozarow, L.H., Wyner, A.D.: Wire-tap channel II. AT&T Bell Lab. Tech. J. 63(10), 2135–2157 (1984)CrossRefGoogle Scholar
  40. 40.
    Resch, J.K., Plank, J.S.: AONT-RS: blending security and performance in dispersed storage systems. In: FAST 2011 (2011)Google Scholar
  41. 41.
    Rivest, R.L.: All-or-nothing encryption and the package transform. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 210–218. Springer, Heidelberg (1997).  https://doi.org/10.1007/BFb0052348CrossRefzbMATHGoogle Scholar
  42. 42.
    Shaltiel, R., Silbak, J.: Explicit list-decodable codes with optimal rate for computationally bounded channels. In: APPROX/RANDOM 2016 (2016)Google Scholar
  43. 43.
    Stinson, D.R.: Something about all or nothing (transforms). Des. Codes Crypt. 22(2), 133–138 (2001)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Tunstall, M., Mukhopadhyay, D., Ali, S.: Differential fault analysis of the advanced encryption standard using a single fault. In: Ardagna, C.A., Zhou, J. (eds.) WISTP 2011. LNCS, vol. 6633, pp. 224–233. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21040-2_15CrossRefGoogle Scholar
  45. 45.
    Wyner, A.D.: The wire-tap channel. Bell Syst. Tech. J. 54(8), 1355–1387 (1975)MathSciNetCrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2018

Authors and Affiliations

  • Aggelos Kiayias
    • 1
  • Feng-Hao Liu
    • 2
  • Yiannis Tselekounis
    • 1
  1. 1.University of EdinburghEdinburghUK
  2. 2.Florida Atlantic UniversityBoca RatonUSA

Personalised recommendations