Advertisement

A New Public-Key Cryptosystem via Mersenne Numbers

  • Divesh Aggarwal
  • Antoine Joux
  • Anupam Prakash
  • Miklos Santha
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10993)

Abstract

In this work, we propose a new public-key cryptosystem whose security is based on the computational intractability of the following problem: Given a Mersenne number \(p = 2^n - 1\), where n is a prime, a positive integer h, and two n-bit integers TR, decide whether their exist n-bit integers FG each of Hamming weight less than h such that \(T = F\cdot R + G\) modulo p.

Notes

Acknowledgments

This research was partially funded by the Singapore Ministry of Education and the National Research Foundation, also through the Tier 3 Grant “Random numbers from quantum processes”, MOE2012-T3-1-009. This work has been supported in part by the European Union’s H2020 Programme under grant agreement number ERC-669891 and the French ANR Blanc program under contract ANR-12-BS02-005 (RDAM project). The second author is grateful to CQT where the work has started during his visit.

References

  1. [AJPS17]
    Aggarwal, D., Joux, A., Prakash, A., Santha, M.: A new public-key cryptosystem via mersenne numbers. Cryptology ePrint Archive, Report 2017/481, version:20170530.072202 (2017)Google Scholar
  2. [BCGN17]
    Beunardeau, M., Connolly, A., Géraud, R., Naccache, D.: On the hardness of the Mersenne Low Hamming Ratio assumption. Technical report, Cryptology ePrint Archive, 2017/522 (2017)Google Scholar
  3. [CHK10]
    Cramer, R., Hofheinz, D., Kiltz, E.: A twist on the Naor-Yung paradigm and its application to efficient CCA-secure encryption from hard search problems. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 146–164. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-11799-2_10CrossRefGoogle Scholar
  4. [dBDJdW17]
    de Boer, K., Ducas, L., Jeffery, S., de Wolf, R.: Attacks on the AJPS mersenne-based cryptosystem. Technical report, Cryptology ePrint Archive, Report 2017/1171 (2017). https://eprint.iacr.org/2017/1171
  5. [DH76]
    Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)MathSciNetCrossRefGoogle Scholar
  6. [ES16]
    Eldar, L., Shor, P.W.: An efficient quantum algorithm for a variant of the closest lattice-vector problem. arXiv preprint arXiv:1611.06999 (2016)
  7. [Gro96]
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)Google Scholar
  8. [GWO+13]
    Lize, G., Wang, L., Ota, K., Dong, M., Cao, Z., Yang, Y.: New public key cryptosystems based on non-abelian factorization problems. Secur. Commun. Netw. 6(7), 912–922 (2013)CrossRefGoogle Scholar
  9. [HHK17]
    Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 341–371. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70500-2_12CrossRefzbMATHGoogle Scholar
  10. [HPS98]
    Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0054868CrossRefGoogle Scholar
  11. [Jan17]
    Janson, S.: Tail bounds for sums of geometric and exponential variables. arXiv preprint arXiv:1709.08157 (2017)
  12. [KLC+00]
    Ko, K.H., Lee, S.J., Cheon, J.H., Han, J.W., Kang, J., Park, C.: New public-key cryptosystem using braid groups. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 166–183. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-44598-6_10CrossRefGoogle Scholar
  13. [LPR10]
    Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13190-5_1CrossRefGoogle Scholar
  14. [LvTMW09]
    Lempken, W., van Tran, T., Magliveras, S.S., Wei, W.: A public key cryptosystem based on non-abelian finite groups. J. Cryptol. 22(2), 62–74 (2009)MathSciNetCrossRefGoogle Scholar
  15. [McE78]
    McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Coding Thv 4244, 114–116 (1978)Google Scholar
  16. [MS77]
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. Elsevier, New York (1977)zbMATHGoogle Scholar
  17. [MTSB13]
    Misoczki, R., Tillich, J.-P., Sendrier, N., Barreto, P.S.: MDPC-McEliece: new McEliece variants from moderate density parity-check codes. In: 2013 IEEE International Symposium on Information Theory Proceedings (ISIT), pp. 2069–2073. IEEE (2013)Google Scholar
  18. [NIS17]
    NIST. Post quantum crypto project (2017). http://csrc.nist.gov/groups/ST/post-quantum-crypto/. Accessed 19 May 2017
  19. [NS97]
    Naccache, D., Stern, J.: A new public-key cryptosystem. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 27–36. Springer, Heidelberg (1997).  https://doi.org/10.1007/3-540-69053-0_3CrossRefGoogle Scholar
  20. [NY90]
    Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing, STOC 1990, pp. 427–437. ACM, New York (1990)Google Scholar
  21. [OP01]
    Okamoto, T., Pointcheval, D.: REACT: rapid enhanced-security asymmetric cryptosystem transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 159–174. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-45353-9_13CrossRefGoogle Scholar
  22. [Reg09]
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6), 34, 40 (2009)MathSciNetCrossRefGoogle Scholar
  23. [RSA78]
    Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)MathSciNetCrossRefGoogle Scholar
  24. [RSN+01]
    Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. Technical report, DTIC Document (2001)Google Scholar
  25. [Sho97]
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)MathSciNetCrossRefGoogle Scholar
  26. [Sho02]
    Shoup, V.: OAEP reconsidered. J. Cryptol. 15(4), 223–249 (2002)MathSciNetCrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2018

Authors and Affiliations

  • Divesh Aggarwal
    • 1
  • Antoine Joux
    • 2
  • Anupam Prakash
    • 3
    • 4
  • Miklos Santha
    • 4
    • 5
  1. 1.School of Computing and Centre for Quantum TechnologiesNational University of SingaporeSingaporeSingapore
  2. 2.Chaire de Cryptologie de la Fondation SU, Sorbonne Université, Institut de Mathématiques de Jussieu-Paris Rive Gauche, Inria, CNRS, Univ Paris DiderotParisFrance
  3. 3.School of Physical and Mathematical SciencesNanyang Technological UniversitySingaporeSingapore
  4. 4.Centre for Quantum TechnologiesNational University of SingaporeSingaporeSingapore
  5. 5.IRIF, Université Paris Diderot, CNRSParisFrance

Personalised recommendations