Advertisement

Limits on the Power of Garbling Techniques for Public-Key Encryption

  • Sanjam Garg
  • Mohammad Hajiabadi
  • Mohammad Mahmoody
  • Ameer Mohammed
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10993)

Abstract

Understanding whether public-key encryption can be based on one-way functions is a fundamental open problem in cryptography. The seminal work of Impagliazzo and Rudich [STOC’89] shows that black-box constructions of public-key encryption from one-way functions are impossible. However, this impossibility result leaves open the possibility of using non-black-box techniques for achieving this goal.

One of the most powerful classes of non-black-box techniques, which can be based on one-way functions (OWFs) alone, is Yao’s garbled circuit technique [FOCS’86]. As for the non-black-box power of this technique, the recent work of Döttling and Garg [CRYPTO’17] shows that the use of garbling allows us to circumvent known black-box barriers in the context of identity-based encryption.

We prove that garbling of circuits that have OWF (or even random oracle) gates in them are insufficient for obtaining public-key encryption. Additionally, we show that this model also captures (non-interactive) zero-knowledge proofs for relations with OWF gates. This indicates that currently known OWF-based non-black-box techniques are perhaps insufficient for realizing public-key encryption.

References

  1. 1.
    Applebaum, B.: Garbled circuits as randomized encodings of functions: a primer. In: Lindell, Y. (ed.) Tutorials on the Foundations of Cryptography: Dedicated to Oded Goldreich. ISC, pp. 1–44. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-57048-8_1. 336CrossRefGoogle Scholar
  2. 2.
    Asharov, G., Segev, G.: Limits on the power of indistinguishability obfuscation and functional encryption. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS), pp. 191–209. IEEE (2015). 337, 339, 343Google Scholar
  3. 3.
    Asharov, G., Segev, G.: On constructing one-way permutations from indistinguishability obfuscation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part II. LNCS, vol. 9563, pp. 512–541. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49099-0_19. 337CrossRefMATHGoogle Scholar
  4. 4.
    Baecher, P., Brzuska, C., Fischlin, M.: Notions of black-box reductions, revisited. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 296–315. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-42033-7_16. 336, 346CrossRefGoogle Scholar
  5. 5.
    Barak, B.: The complexity of public-key cryptography. In: Lindell, Y. (ed.) Tutorials on the Foundations of Cryptography, pp. 45–77. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-57048-8_2. 336CrossRefGoogle Scholar
  6. 6.
    Barak, B., Mahmoody-Ghidary, M.: Lower bounds on signatures from symmetric primitives. In: 48th Annual Symposium on Foundations of Computer Science, Providence, RI, USA, 20–23 October 2007, pp. 680–688. IEEE Computer Society Press (2007). 361Google Scholar
  7. 7.
    Barak, B., Mahmoody-Ghidary, M.: Merkle puzzles are optimal—an O(n2)-query attack on any key exchange from a random oracle. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 374–390. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03356-8_22. 350CrossRefGoogle Scholar
  8. 8.
    Beaver, D.: Correlated pseudorandomness and the complexity of private computations. In: 28th Annual ACM Symposium on Theory of Computing, pp. 479–488, Philadelphia, PA, USA, 22–24 May 1996. ACM Press (1996). 337Google Scholar
  9. 9.
    Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 12: 19th Conference on Computer and Communications Security, Raleigh, NC, USA, 16–18 October 2012, pp. 784–796. ACM Press (2012). 336, 337, 338Google Scholar
  10. 10.
    Bitansky, N., Degwekar, A., Vaikuntanathan, V.: Structure vs. hardness through the obfuscation lens. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 696–723. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_23. 337CrossRefGoogle Scholar
  11. 11.
    Boneh, D., Papakonstantinou, P.A., Rackoff, C., Vahlis, Y., Waters, B.: On the impossibility of basing identity based encryption on trapdoor permutations. In: 49th Annual Symposium on Foundations of Computer Science, Philadelphia, PA, USA, 25–28 October 2008, pp. 283–292. IEEE Computer Society Press (2008). 336Google Scholar
  12. 12.
    Brakerski, Z., Katz, J., Segev, G., Yerukhimovich, A.: Limits on the power of zero-knowledge proofs in cryptographic constructions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 559–578. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19571-6_34. 337, 338, 339CrossRefMATHGoogle Scholar
  13. 13.
    Canetti, R., Kalai, Y.T., Paneth, O.: On obfuscation with random oracles. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 456–467. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46497-7_18. 340CrossRefGoogle Scholar
  14. 14.
    Dachman-Soled, D.: Towards non-black-box separations of public key encryption and one way function. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part II. LNCS, vol. 9986, pp. 169–191. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53644-5_7. 339CrossRefMATHGoogle Scholar
  15. 15.
    Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976). 335MathSciNetCrossRefGoogle Scholar
  16. 16.
    Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assumption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 537–569. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_18. 336, 338CrossRefGoogle Scholar
  17. 17.
    Garg, S., Lu, S., Ostrovsky, R., Scafuro, A.: Garbled RAM from one-way functions. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th Annual ACM Symposium on Theory of Computing, Portland, OR, USA, 14–17 June 2015, pp. 449–458. ACM Press (2015). 337Google Scholar
  18. 18.
    Garg, S., Mahmoody, M., Mohammed, A.: Lower bounds on obfuscation from all-or-nothing encryption primitives. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 661–695. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_22. 339, 340CrossRefGoogle Scholar
  19. 19.
    Garg, S., Mahmoody, M., Mohammed, A.: When does functional encryption imply obfuscation? In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 82–115. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70500-2_4. 339CrossRefGoogle Scholar
  20. 20.
    Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd Annual ACM Symposium on Theory of Computing, San Jose, CA, USA, 6–8 June 2011, pp. 99–108. ACM Press (2011). 339Google Scholar
  21. 21.
    Gertner, Y., Malkin, T., Reingold, O.: On the impossibility of basing trapdoor functions on trapdoor predicates. In: 42nd Annual Symposium on Foundations of Computer Science, Las Vegas, NV, USA, 14–17 October 2001, pp. 126–135. IEEE Computer Society Press (2001). 341Google Scholar
  22. 22.
    Hsiao, C.-Y., Reyzin, L.: Finding collisions on a public road, or do secure hash functions need secret coins? In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 92–105. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28628-8_6. 341CrossRefGoogle Scholar
  23. 23.
    Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: 21st Annual ACM Symposium on Theory of Computing, Seattle, WA, USA, 15–17 May 1989, pp. 44–61. ACM Press (1989). 336, 339, 340, 341, 342, 344, 346, 349, 350Google Scholar
  24. 24.
    Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with applications to round-efficient secure computation. In: 41st Annual Symposium on Foundations of Computer Science, Redondo Beach, CA, USA, 12–14 November 2000, pp. 294–304. IEEE Computer Society Press (2000). 336Google Scholar
  25. 25.
    Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party computation. J. Cryptol. 22(2), 161–188 (2009). 336MathSciNetCrossRefGoogle Scholar
  26. 26.
    Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 719–734. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38348-9_42. 337CrossRefGoogle Scholar
  27. 27.
    Mahmoody, M., Mohammed, A., Nematihaji, S.: On the impossibility of virtual black-box obfuscation in idealized models. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part I. LNCS, vol. 9562, pp. 18–48. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49096-9_2. 340CrossRefMATHGoogle Scholar
  28. 28.
    Mahmoody, M., Mohammed, A., Nematihaji, S., Pass, R., Shelat, A.: Lower bounds on assumptions behind indistinguishability obfuscation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part I. LNCS, vol. 9562, pp. 49–66. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49096-9_3. 340CrossRefGoogle Scholar
  29. 29.
    Papakonstantinou, P.A., Rackoff, C.W., Vahlis, Y.: How powerful are the DDH hard groups? Cryptology ePrint Archive, Report 2012/653 (2012). http://eprint.iacr.org/2012/653. 336, 338
  30. 30.
    Pass, R.: Limits of provable security from standard assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd Annual ACM Symposium on Theory of Computing, San Jose, CA, USA, 6–8 June 2011, pp. 109–118. ACM Press (2011), 339Google Scholar
  31. 31.
    Pass, R., Tseng, W.-L.D., Venkitasubramaniam, M.: Towards non-black-box lower bounds in cryptography. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 579–596. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19571-6_35. 339CrossRefMATHGoogle Scholar
  32. 32.
    Reingold, O., Trevisan, L., Vadhan, S.: Notions of reducibility between cryptographic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24638-1_1. 336, 337, 346CrossRefMATHGoogle Scholar
  33. 33.
    Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signature and public-key cryptosystems. Commun. Assoc. Comput. Mach. 21(2), 120–126 (1978). 335MathSciNetMATHGoogle Scholar
  34. 34.
    Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: Shmoys, D.B. (ed.) 46th Annual ACM Symposium on Theory of Computing, New York, NY, USA, 31 May–3 June 2014, pp. 475–484. ACM Press (2014). 341Google Scholar
  35. 35.
    Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: 27th Annual Symposium on Foundations of Computer Science, Toronto, Ontario, Canada, 27–29 October 1986, pp. 162–167. IEEE Computer Society Press (1986). 336Google Scholar

Copyright information

© International Association for Cryptologic Research 2018

Authors and Affiliations

  • Sanjam Garg
    • 1
  • Mohammad Hajiabadi
    • 1
    • 2
  • Mohammad Mahmoody
    • 2
  • Ameer Mohammed
    • 2
  1. 1.University of California, BerkeleyBerkeleyUSA
  2. 2.University of VirginiaCharlottesvilleUSA

Personalised recommendations