Advertisement

Direct Cosmic Ray Detection: Protons, Nuclei, Electrons and Antimatter

  • Maurizio Spurio
Chapter
Part of the Astronomy and Astrophysics Library book series (AAL)

Abstract

This chapter refers on the chemical composition of cosmic rays (CRs), i.e., the relative percentage of protons and heavier nuclei in cosmic radiation. Its detailed knowledge up to the highest energies is of crucial importance for the understanding of astrophysical sources of CRs and their propagation in the Galaxy. The chemical composition of CRs can be accurately measured through experiments carried out at a negligible residual atmospheric depth or outside the atmosphere. Here, we deal with the techniques and the experimental results of direct measurements performed with balloons and space missions. These accurately measured the flux and chemical composition of CRs up to about 100 TeV, allowing for the formulation of models around their galactic origin and propagation. One of the key feature derived by these observations is that the CR spectra are well-described by power laws, with similar spectral indices for protons and heavier nuclei, up to energies of ∼ 1015 eV. The CR sources up to these energies should be concentrated near the galactic disk, with a radial distribution similar to that of supernova remnants.

References

  1. P. Abreu et al. (AUGER Collaboration), Measurement of the proton-air cross-section at \(\sqrt {s}\) = 57 TeV with the pierre auger observatory. Phys. Rev. Lett. 109, 062002 (2012)Google Scholar
  2. M. Ackermann et al., Measurement of separate cosmic-ray electron and positron spectra with the Fermi-LAT. Phys. Rev. Lett. 108, 011103 (2012)ADSCrossRefGoogle Scholar
  3. O. Adriani et al. (PAMELA Collaboration), Observation of an anomalous positron abundance in the cosmic radiation. Nature 458, 607–609 (2009)Google Scholar
  4. O. Adriani et al. (PAMELA Collaboration), The cosmic-ray electron flux measured by the PAMELA experiment between 1 and 625 GeV. Phys. Rev. Lett. 106, 201101 (2011a)Google Scholar
  5. O. Adriani et al., PAMELA measurements of cosmic-ray proton and helium spectra. Science 332, 69–72 (2011b).  https://doi.org/10.1126/science.1199172 ADSCrossRefGoogle Scholar
  6. O. Adriani et al. (PAMELA Collaboration), The cosmic-ray positron energy spectrum measured by PAMELA. Phys. Rev. Lett. 111, 081102 (2013). arXiv:1308.0133
  7. O. Adriani et al., Ten years of PAMELA in space. Rivista Nuovo Cimento 40, 473 (2017).  https://doi.org/10.1393/ncr/i2017-10140-x Google Scholar
  8. M. Aguilar et al. (AMS-02 Collaboration), AMS-02 provides a precise measure of cosmic rays. CERN Courier 53(8), 23–26 (2013a). Also: B. Bertucci ICRC 2013 (ID 1267)Google Scholar
  9. M. Aguilar et al. (AMS-02 Collaboration), First result from the alpha magnetic spectrometer on the ISS: precision measurement of the positron fraction in primary cosmic rays of 0.5–350 GeV. Phys. Rev. Lett. 110, 14–141102 (2013b)Google Scholar
  10. M. Aguilar et al. (AMS-02 Collaboration), Precision measurement of the (e + + e ) flux in primary cosmic rays from 0.5 GeV to 1 TeV with the AMS on the ISS. Phys. Rev. Lett. 113, 221102 (2014)Google Scholar
  11. M. Aguilar et al. (AMS-02 Collaboration), Precision measurement of the proton flux in primary cosmic rays from rigidity 1 GV to 1.8 TV with the AMS on the ISS. Phys. Rev. Lett. 114, 171103 (2015)Google Scholar
  12. M. Aguilar et al. (AMS-02 Collaboration), Precision measurement of the helium flux in primary cosmic rays of rigidities 1.9 GV to 3 TV with the AMS on the ISS. Phys. Rev. Lett. 115, 211101 (2015)Google Scholar
  13. M. Aguilar et al. (AMS-02 Collaboration), Antiproton flux, antiproton-to-proton flux ratio, and properties of elementary particle fluxes in primary CRs measured with the AMS on the ISS. Phys. Rev. Lett. 117, 091103 (2016)Google Scholar
  14. F.A. Aharonian, A.M. Atoyan, H.J. Voelk, High energy electrons and positrons in cosmic rays as an indicator of the existence of a nearby cosmic Tevatron. Astron. Astrophys. 294, L41 (1995)ADSGoogle Scholar
  15. H.S. Ahn et al. (CREAM Collaboration), The cosmic ray energetics and mass (CREAM) instrument. T. Nucl. Instrum. Methods A 579, 1034–1053 (2007)Google Scholar
  16. H.S. Ahn et al., Measurements of the relative abundances of high-energy cosmic-ray nuclei in the Tev/nucleon region. Astrophys. J. Lett. 714, L89 (2010)ADSCrossRefGoogle Scholar
  17. J. Alcaraz et al., Cosmic protons. Phys. Lett. B 490, 27 (2000)ADSCrossRefGoogle Scholar
  18. K. Asakimori et al., Cosmic-ray proton and helium spectra: results from the JACEE experiment. Astrophys. J. 502, 278–283 (1998)ADSCrossRefGoogle Scholar
  19. M. Ave et al., Composition of primary cosmic-ray nuclei at high energies. Astrophys. J. 678, 262–273 (2008)ADSCrossRefGoogle Scholar
  20. J.J. Beatty et al., New measurement of the cosmic-ray positron fraction from 5 to 15 GeV. Phys. Rev. Lett. 93, 24112 (2004)CrossRefGoogle Scholar
  21. J. Blümer, R. Engel, J. Hörandel, Cosmic rays from the knee to the highest energies. Prog. Part. Nucl. Phys. 63, 293–338 (2009)ADSCrossRefGoogle Scholar
  22. M. Boezio, E. Mocchiutti, Chemical composition of galactic cosmic rays with space experiments. Astropart. Phys. 39–40, 95–108 (2012)ADSCrossRefGoogle Scholar
  23. M. Boezio et al., The cosmic-ray proton and helium spectra between 0.4 and 200 GV. Astrophys. J. 518, 457 (1999)ADSCrossRefGoogle Scholar
  24. M. Boezio et al., The cosmic-ray proton and helium spectra measured with the CAPRICE98 balloon experiment. Astropart. Phys. 19, 583 (2003)ADSCrossRefGoogle Scholar
  25. S. Braibant, G. Giacomelli, M. Spurio, Particle and Fundamental Interaction (Springer, Berlin, 2011). ISBN: 978-9400724631zbMATHGoogle Scholar
  26. J. Chang et al., An excess of cosmic ray electrons at energies of 300–800 GeV. Nature 456, 362 (2008)ADSCrossRefGoogle Scholar
  27. J.H. Crane, D.D. Guo, M.H. Israel, J. Klarmann, Interaction mean-free-path of cosmic-ray Fe in air. Astrophys. Space Sci. 94(1), 201–209 (1983)ADSCrossRefGoogle Scholar
  28. V.A. Derbina et al., Cosmic-ray spectra and composition in the energy range of 10–1000 TeV per particle obtained by the RUNJOB experiment. Astrophys. J. 628, L41–L44 (2005)ADSCrossRefGoogle Scholar
  29. J.J. Engelmann et al., Charge composition and energy spectra of CR nuclei for elements from Be to Ni. results from HEAO-3-C2. Astron. Astrophys. 233, 96 (1990)Google Scholar
  30. O. Ganel et al., Beam tests of the balloon-borne ATIC experiment. Nucl. Instrum. Methods A 552(3), 409–419 (2005)ADSCrossRefGoogle Scholar
  31. M. Garcia-Munoz, G.M. Mason, J.A. Simpson, The cosmic-ray age deduced from the Be-10 abundance. Astrophys. J. 201, L145 (1975)ADSCrossRefGoogle Scholar
  32. M. Garcia-Munoz, G.M. Mason, J.A. Simpson, The age of galactic cosmic rays derived. Astrophys. J. 217, 859–877 (1977)ADSCrossRefGoogle Scholar
  33. P.K.F. Grieder, Cosmic Rays at Earth (Elsevier, New York, 2001). ISBN: 978-0444507105Google Scholar
  34. S. Haino et al., Measurements of primary and atmospheric cosmic-ray spectra with the BESS-TeV spectrometer. Phys. Lett. B 594, 35 (2004)ADSCrossRefGoogle Scholar
  35. J.R. Hörandel, On the knee in the energy spectrum of cosmic rays. Astropart. Phys. 19, 193–220 (2003)ADSCrossRefGoogle Scholar
  36. K. Lodders, Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220 (2003)ADSCrossRefGoogle Scholar
  37. K. Lodders, H. Palme, H.P. Gail. Abundances of the elements in the solar system, Chapter 4 of Landolt-Börnstein. New Series, Astronomy and Astrophysics (Springer, Berlin, 2009). Also: arXiv:0901.1149
  38. D. Maurin, F. Melot, R. Taillet. A database of charged cosmic rays. Astron. Astrophys. 569, A32 (2014). Arxiv:1302.5525ADSCrossRefGoogle Scholar
  39. W. Menn et al., The absolute flux of protons and helium at the top of the atmosphere using IMAX. Astrophys. J. 533, 281 (2000)ADSCrossRefGoogle Scholar
  40. C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40, 100001 (2016, update). http://pdg.lbl.gov/2016/
  41. E.S. Seo, Direct measurements of cosmic rays using balloon borne experiments. Astropart. Phys. 39–40, 76–87 (2012)ADSCrossRefGoogle Scholar
  42. E.S. Seo et al., Cosmic ray energetics and mass for the international space station (ISS-CREAM). Adv. Space Res. 53, 1451–1455 (2014)ADSCrossRefGoogle Scholar
  43. P.D. Serpico, Astrophysical models for the origin of the positron “excess”. Astropart. Phys. 39–40, 2–11 (2012)ADSCrossRefGoogle Scholar
  44. J. Simpson, Elemental and isotopic composition of the galactic cosmic rays. Ann. Rev. Nucl. Part. Sci. 33, 323–382 (1983)ADSCrossRefGoogle Scholar
  45. D.J. Thompson, L. Baldini, Y. Uchiyama, Cosmic ray studies with the Fermi gamma-ray space telescope Large Area Telescope. Astropart. Phys. 39–40, 22–32 (2012)ADSCrossRefGoogle Scholar
  46. J.P. Wefel et al., ICRC Conference, vol. 2 (2007), p. 31Google Scholar
  47. B. Wiebel-Sooth, P.L. Biermann, H. Meyer, Cosmic rays. VII. individual element spectra: prediction and data. Astron. Astrophys. 330, 389–398 (1998)ADSGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Maurizio Spurio
    • 1
  1. 1.Department of Physics and Astronomy, and INFNUniversity of BolognaBolognaItaly

Personalised recommendations