Advertisement

Atmospheric Muons and Neutrinos

  • Maurizio Spurio
Chapter
Part of the Astronomy and Astrophysics Library book series (AAL)

Abstract

Muons are the most abundant charged particles arriving at sea level and the only ones able to penetrate deeply underground. The reason stems from their small energy loss, their relatively long lifetime, and their small interaction cross-section. The flux of muons with energy >1 GeV at sea level is on the order of 200 particles/(m2 s). In this chapter, starting from the production of secondary nucleons and charged mesons by primary CRs interactions with atmospheric nuclei, we derive the energy spectra of atmospheric muons and atmospheric neutrinos. Atmospheric muons can penetrate up to ∼12 km of water. The knowledge of the underground muon flux is important for evaluating the background in searches for rare events in underground laboratories, as the proton decay predicted by Grand Unified Theories. The first generation of underground experiments immediately realized that atmospheric neutrinos represent the irreducible background. Because of the close relation between muon and neutrino production, the parameters characterizing the muon spectrum can provide important information on the atmospheric neutrino flux. These early searches for rare phenomena predicted by GUT theories failed, but these experiments discovered an unexpected phenomenon: the disappearance of atmospheric neutrino, explained by neutrino oscillations. The high-precision measurements of the oscillation parameters of atmospheric neutrinos represent the primary contribution of astroparticle experiments to particle physics, successively confirmed by accelerator experiments.

References

  1. M.G. Aartsen et al., Measurement of the atmospheric ν e flux in IceCube. Phys. Rev. Lett. 110, 151105 (2013)ADSCrossRefGoogle Scholar
  2. T. Adam et al., Measurement of the neutrino velocity with the OPERA detector in the CNGS beam (2014). Compare arXiv:1109.4897v1 with arXiv:1109.4897v4
  3. M. Ambrosio et al., Measurement of the atmospheric neutrino-induced upgoing muon flux using MACRO. Phys. Lett. 434, 451 (1998). (MACRO Collaboration)Google Scholar
  4. G.D. Barr, T.K. Gaisser, P. Lipari, S. Robbins, T. Stanev, Three-dimensional calculation of atmospheric neutrinos. Phys. Rev. D 70, 023006 (2004)ADSCrossRefGoogle Scholar
  5. Y. Becherini, A. Margiotta, M. Sioli, M. Spurio, A Parameterisation of single and multiple muons in the deep water or ice. Astropart. Phys. 25, 1 (2006)ADSCrossRefGoogle Scholar
  6. J. Beringer et al., (Particle Data Group). The review of particle physics. Phys. Rev. D86, 010001 (2012)Google Scholar
  7. S. Braibant, G. Giacomelli, M. Spurio, Particles and Fundamental Interactions (Springer, New York, 2012)CrossRefGoogle Scholar
  8. S. Cecchini, M. Spurio, Atmospheric muons: experimental aspects. Geosci. Instrum. Method. Data Syst. 1 185–196 (2012). arXiv:1208.1171 ADSCrossRefGoogle Scholar
  9. L.I. Dorman, Cosmic Rays in the Earth’s Atmosphere and Underground (Kluwer Academic Publisher, New York, 2004)CrossRefGoogle Scholar
  10. Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 81, 1562 (1998). (SuperKamiokande Collaboration)Google Scholar
  11. T.K. Gaisser, Cosmic Rays and Particle Physics (Cambridge University Press, Cambridge, 1990)Google Scholar
  12. T.K. Gaisser, Semi-analytic approximations for production of atmospheric muons and neutrinos. Astropart. Phys. 16, 285 (2002)ADSCrossRefGoogle Scholar
  13. T.K. Gaisser, M. Honda, Flux of atmospheric neutrinos. Annu. Rev. Nucl. Part. Sci. 52, 153–199 (2002)ADSCrossRefGoogle Scholar
  14. P.K.F. Grieder, Extensive Air Showers (Springer, Berlin, 2010)zbMATHGoogle Scholar
  15. M. Honda, T. Kajita, K. Kasahara, S. Midorikawa, T. Sanuki, Calculation of atmospheric neutrino flux using the interaction model calibrated with atmospheric muon data. Phys. Rev. D 75, 043006 (2007)ADSCrossRefGoogle Scholar
  16. J.I. Illana, P. Lipari, M. Masip, D. Meloni, Atmospheric lepton fluxes at very high energy. Astropart. Phys. 34, 663–673 (2011). arXiv:1010.5084
  17. T. Kajita, Atmospheric neutrinos. Adv. High Ener. Phys. 504715 (2012). https://doi.org/10.1155/2012/504715 CrossRefGoogle Scholar
  18. M. Koshiba, Observational neutrino astrophysics. Phys. Rep. 220, 229–381 (1992)ADSCrossRefGoogle Scholar
  19. N. Lesparre et al., Geophysical muon imaging: feasibility and limits. Geophys. J. Int. 183, 1348 (2010)ADSCrossRefGoogle Scholar
  20. P. Lipari, Lepton spectra in the earth’s atmosphere. Astropart. Phys. 1, 195 (1993)ADSCrossRefGoogle Scholar
  21. P. Lipari, Introduction to neutrino physics. 1st CERN-CLAF School of High-energy Physics, Itacuruca, Brazil (2001). http://cds.cern.ch/record/677618/files/p115.pdf
  22. B. Pontecorvo, Neutrino experiments and the problem of conservation of leptonic charge. Sov. Phys. 26, 984–988 (1968). (English translation of a paper in Russian in 1967)Google Scholar
  23. M. Sanchez et al., Measurement of the L/E distributions of atmospheric ν in Soudan 2 and their interpretation as neutrino oscillations. Phys. Rev. D68, 113004 (2003). (Soudan 2 Collaboration)Google Scholar
  24. Y. Takeuchi, Results from Super-Kamiokande. Nucl. Phys. Proc. Supl. 7984, 229–232 (2012) (Super-Kamiokande Collaboration)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Maurizio Spurio
    • 1
  1. 1.Department of Physics and Astronomy, and INFNUniversity of BolognaBolognaItaly

Personalised recommendations