Advertisement

High-Energy Neutrino Astrophysics

  • Maurizio Spurio
Chapter
Part of the Astronomy and Astrophysics Library book series (AAL)

Abstract

Neutrino astronomy shares with γ-ray astronomy the objective of understanding the sources and mechanisms of CR acceleration. Due to their much larger interaction cross-section, γ-rays are easier to detect than neutrinos, but neutrinos can only be produced through hadronic processes. No single source, either galactic or extragalactic, has been conclusively proven to accelerate CRs up to PeV energies. Neutrino astronomy is expected to be decisive in the quest for CR sources. The idea of a large volume experiment for cosmic neutrinos based on the detection of the secondary particles produced in neutrino interactions was first formulated in the 1960s by M. Markov. He proposed: “to install detectors deep in a lake or in the sea and to determine the direction of the charged particles with the help of Cherenkov radiation”. Starting from the Markov idea, in this chapter we describe how the challenge of detecting galactic neutrinos is open for a multi kilometer-scale apparatus, deployed in the Antarctic ice or in deep seawater. At present a km3 detector (IceCube) is operating in the ice of the South Pole and another smaller underwater telescope (ANTARES) is running in the Mediterranean Sea, waiting for the Mediterranean km3 telescope (KM3NeT) and another detector in Lake Baikal. All of them are made up of a grid of optical sensors (photomultipliers). The recent first measurement of an astrophysical high-energy neutrino flux, opening the field of neutrino astronomy for the next decade, is also reported.

References

  1. M.G. Aartsen et al., Evidence for high-energy extraterrestrial neutrinos at the IceCube detector. Science 342, 1242856–1 (2013a). Updated in arXiv:1405.5303
  2. M.G. Aartsen et al., Search for time-independent neutrino emission from astrophysical sources with 3 years of IceCube data. Astrophys. J. 779, 132 (2013b)ADSCrossRefGoogle Scholar
  3. M.G. Aartsen et al., IceCube collaboration, Observation and characterization of a cosmic muon neutrino flux from the northern hemisphere using six years of IceCube data. Astrophys. J. 833, 3 (2016)ADSCrossRefGoogle Scholar
  4. M.G. Aartsen et al., The IceCube Collaboration, Contributions to ICRC 2017 Part II: properties of the atmospheric and astrophysical neutrino flux (2017). ArXiv:1710.01191. PoS(ICRC2017)981 and 1005Google Scholar
  5. R. Abbasi et al., Limits on neutrino emission from gamma-ray bursts with the 40 string IceCube detector. Phys. Rev. Lett. 106, 141101 (2011)ADSCrossRefGoogle Scholar
  6. R. Abbasi et al., An absence of neutrinos associated with cosmic-ray acceleration in γ-ray bursts. Nature 484, 351 (2012)ADSCrossRefGoogle Scholar
  7. P. Abreu et al., Ultrahigh energy neutrinos at the Pierre Auger Observatory. Adv. High Energy Phys. 2013, 708680 (2013). https://doi.org/10.1155/2013/708680 CrossRefGoogle Scholar
  8. S. Adrián-Martínez et al., Search for cosmic neutrino point sources with four years of data from the ANTARES telescope. Astrophys. J. 760, 53 (2012)ADSCrossRefGoogle Scholar
  9. S. Adrián-Martínez et al. Search for muon neutrinos from gamma-ray bursts with the ANTARES neutrino telescope using 2008 to 2011 data. Astron. Astrophys. 559, A9 (2013) . Also arXiv:1307.0304v1
  10. S. Adrián-Martínez et al., Searches for point-like and extended neutrino sources close to the galactic center using the ANTARES neutrino telescope. Astrophys. J. Lett. 786, L5 (2014)ADSCrossRefGoogle Scholar
  11. S. Adrián-Martínez et al., Letter of intent for KM3NeT 2.0. J. Phys. G: Nucl. Part. Phys. 43, 084001 (2016)Google Scholar
  12. A. Albert et al., ANTARES Collaboration. All-flavor search for a diffuse flux of cosmic neutrinos with nine years of ANTARES data. Astrophys. J. Lett. 853, L7 (2018)Google Scholar
  13. D. Allard, Extragalactic propagation of ultrahigh energy cosmic-rays. Astropart. Phys. 39–40, 33–43 (2012)ADSCrossRefGoogle Scholar
  14. R. Aloisio, P. Blasi, I. De Mitri, S. Petrera, Selected topics in cosmic ray physics (2017). ArXiv:1707.06147Google Scholar
  15. B. Baret et al., Bounding the time delay between high-energy neutrinos and gravitational-wave transients from GRBs. Astropart. Phys. 35, 1 (2011)ADSCrossRefGoogle Scholar
  16. J. Becker, High-energy neutrinos in the context of multimessenger astrophysics. Phys. Rep. 458, 173–246 (2008)ADSCrossRefGoogle Scholar
  17. S. Braibant, G. Giacomelli, M. Spurio, Particle and Fundamental Interactions (Springer, Berlin, 2011). ISBN: 978-9400724631zbMATHGoogle Scholar
  18. T. Chiarusi, M. Spurio, High-energy astrophysics with neutrino telescopes. Eur. Phys. J. C65, 649 (2010)ADSCrossRefGoogle Scholar
  19. A.L. Connolly, A.G. Vieregg. Radio detection of high energy neutrinos, in Neutrino Astronomy (Word Scientific, Singapore, 2017). ISBN: 978-981-4759-40-3. ArXiv:1607.08232CrossRefGoogle Scholar
  20. T.K. Gaisser, F. Halzen, T. Stanev, Particle astrophysics, with high-energy neutrinos. Phys. Rep. 258, 173–236 (1995). Erratum-ibid. 271, 355–356 (1996)ADSCrossRefGoogle Scholar
  21. D. Guetta et al., Neutrinos from individual gamma-ray bursts in the BATSE catalog. Astropart. Phys. 20, 429–455 (2004)ADSCrossRefGoogle Scholar
  22. F. Halzen, Astroparticle physics with high energy neutrinos: from AMANDA to IceCube. Eur. Phys. J. C 46, 669–687 (2006)ADSCrossRefGoogle Scholar
  23. R. Lahmann, Acoustic detection of neutrinos: review and future potential. Nucl. Part. Phys. Proc. 273–275, 406–413 (2016)CrossRefGoogle Scholar
  24. P. Sapienza, G. Riccobene, High-energy neutrino astronomy. Riv. Nuovo Cimento 32(12), 591 (2009)Google Scholar
  25. M.W.E. Smith et al., The astrophysical multimessenger observatory network (AMON). Astropart. Phys. 45, 56 (2013)ADSCrossRefGoogle Scholar
  26. C. Spiering, Towards high-energy neutrino astronomy: a historical review. Eur. Phys. J. H37, 515–565 (2012). Also: arXiv:1207.4952v1
  27. C. Stegmann, A. Kappes, J. Hinton, F. Aharonian, Potential neutrino signals in a northern hemisphere neutrino telescope from galactic gamma-ray sources. Astrophys. Space Sci. 309, 429 (2007)ADSCrossRefGoogle Scholar
  28. F. Vissani, F. Aharonian, Galactic sources of high-energy neutrinos: highlights. Nucl. Instrum. Meth. A 692, 5–12 (2012)ADSCrossRefGoogle Scholar
  29. E. Waxman, J. Bahcall, High energy neutrinos from cosmological gamma-ray burst fireballs. Phys. Rev. Lett. 78, 2292–2295 (1997)ADSCrossRefGoogle Scholar
  30. E. Waxman, J. Bahcall, High energy neutrinos from astrophysical sources: an upper bound. Phys. Rev. D59, 023002–1 (1998)ADSGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Maurizio Spurio
    • 1
  1. 1.Department of Physics and Astronomy, and INFNUniversity of BolognaBolognaItaly

Personalised recommendations