Advertisement

Laser Structuring of Soft Materials: Laser-Induced Forward Transfer and Two-Photon Polymerization

  • Flavian Stokker-Cheregi
  • Alexandra Palla-Papavlu
  • Irina Alexandra Paun
  • Thomas Lippert
  • Maria Dinescu
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 274)

Abstract

This chapter discusses recent progress in 2D and 3D printing technologies, in particular laser-induced forward transfer and two-photon polymerization (TPP). We explore their potential for applications in micro-electronics, protein microarrays, sensors and biosensors, and tissue engineering. An overview of the factors that affect patterning, miniaturization and functionality is presented. A special focus is placed on laser direct writing via TPP for the fabrication of 3D vertical microtubes acting as microreservoirs for an osteogenic drug.

Notes

Acknowledgements

This work was supported by the Romanian National Program 4N/2016, the Paul Scherrer Institut (Switzerland), and grants of the Romanian National Authority for Scientific Research and Innovation, CNCS—UEFISCDI, project number PN-II-RU-TE-2014-4-2311 (Flex-SENS), PNII-PT-PCCA-2013-4-1992 (SOLE), PN-II-RU-TE-2014-4-2534 and PN-III-P2-2.1-PED-2016-1715 (HERMESH). A part of this work (two photon polymerization experiments) was carried out in the CETAL laser facility, supported by the National Program PN 16 47—LAPLAS IV.

The authors would like to thank Dr. Catalin Luculescu for the SEM analysis, Catalin Stelian Tuta for the drug release measurements by HPLC, and Dr. Marian Zamfirescu from CETAL-INFLPR for assistance with the software design of the microstructures.

Conflict of Interest

The authors declare no competing interests.

References

  1. 1.
    R.S. Braudy, Proc. IEEE 57, 1771–1772 (1969)CrossRefGoogle Scholar
  2. 2.
    A.D. Brisbane, U.S. Patent 3,560,258, filled and issued May 31, 1967 issued 2 Feb 1971 (1971)Google Scholar
  3. 3.
    M.L. Levene, R.D. Scott, B.W. Siryj, Appl. Opt. 9(10), 2260–2265 (1970)ADSCrossRefGoogle Scholar
  4. 4.
    J. Bohandy, B.F. Kim, F.J. Adrian, J. Appl. Phys. 60(4), 1538–1539 (1986)ADSCrossRefGoogle Scholar
  5. 5.
    J. Bohandy, B.F. Kim, F.J. Adrian, A.N. Jette, J. Appl. Phys. 63(4), 1158–1162 (1988)ADSCrossRefGoogle Scholar
  6. 6.
    V. Sametoglu, V.T.K. Sauer, Y.Y. Tsui, Opt. Express 21(15), 18525–18531 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    V. Schultze, M. Wagner, Appl. Surf. Sci. 52, 303 (1991)ADSCrossRefGoogle Scholar
  8. 8.
    Z. Kantor, Z.S. Toth, T. Szorenyi, A.L. Toth, Appl. Phys. Lett. 64, 3506 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    J.A. Greer, T.E. Parker, SPIE Proc. 998, 113 (1988)ADSCrossRefGoogle Scholar
  10. 10.
    I. Zergioti, S. Mailis, N.A. Vainos, P. Papakonstantinou, C. Kalpouzos, C.P. Grigoropoulous, C. Fotakis, Appl. Phys. A 66, 579–582 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, J. Perrière, J. Mater. Res. 4, 1082 (1989)ADSCrossRefGoogle Scholar
  12. 12.
    C.W. Visser, R. Pohl, C. Sun, G.-W. Römer, B. Huis in‘t Veld, D. Lohse, Adv. Mat. 27, 4087–4092 (2015)Google Scholar
  13. 13.
    M. Zenou, Z. Kotler, Opt. Express 24(2), 1431–1446 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    J. Luo, R. Pohl, L. Qi, G.-W. Römer, C. Sun, D. Lohse, C.W. Visser, Small 1602553 (2017)Google Scholar
  15. 15.
    S. Walsh, G.R. Jordan, C. Jefferiss, K. Stewart, J.N. Beresford, Rheumatology 40, 74–83 (2001)CrossRefGoogle Scholar
  16. 16.
    Y. Peck, D.A. Wang, Expert Opin. Drug Deliv. 10, 369–383 (2013)CrossRefGoogle Scholar
  17. 17.
    D.A. LaVan, T. McGuire, R. Langer, Nat. Biotech. 21, 1184–1191 (2003)CrossRefGoogle Scholar
  18. 18.
    S. Mura, J. Nicolas, P. Couvreur, Nat. Mater. 12, 991–1003 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    B.P. Timko, T. Dvir, D.S. Kohane, Adv. Mater. 22, 4925–4943 (2010)CrossRefGoogle Scholar
  20. 20.
    M. Mihailescu, I.A. Paun, M. Zamfirescu, C.R. Luculescu, A.M. Acasandrei, M. Dinescu, J. Mat. Sci. 61, 4262–4273 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    H.B. Sun, T. Tanaka, S. Kawata, Appl. Phys. Lett. 80, 3673–3680 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    H.B. Sun, S. Kawata, Adv. Polym. Sci. 170, 169–273 (2004)CrossRefGoogle Scholar
  23. 23.
    D.S. Correa, L. De Boni, A.J.G. Otuka, V. Tribuzi, C.R. Mendonça, Two-Photon Polymerization Fabrication of Doped Microstructures, in Polymerization, Chap. 15, 12 Sept 2012Google Scholar
  24. 24.
    O. Kufelt, A. El-Tamer, C. Sehring, M. Meißner, S. Schlie-Wolter, B.N. Chichkov, Acta Biomater. 18, 186–195 (2015)CrossRefGoogle Scholar
  25. 25.
    A. Marino, C. Filippeschi, G.G. Genchi, V. Mattoli, B. Mazzolai, G. Ciofani, Acta Biomater. 10, 4304–4313 (2014)CrossRefGoogle Scholar
  26. 26.
    M. Staples, Microchips and controlled-release drug reservoirs, wiley interdiscip. Rev. Nanomed. Nanobiotechnol 2, 400–417 (2010)CrossRefGoogle Scholar
  27. 27.
    A. Piqué, D.B. Chrisey, R.C.Y. Auyeung, J. Fitz-Gerald, H.D. Wu, R.A. McGill, S. Lakeou, P.K. Wu, V. Nguyen, M. Duignan, Appl. Phys. A 69(7), S279–S284 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    A. Pique, D.B. Chrisey, R.C.Y. Auyeung, S. Lakeou, R. Chung, R.A. McGill, P.K. Wu, M. Duignan, J. FitzGerald, H.D. Wu, SPIE 3618, 330–339 (1999)ADSGoogle Scholar
  29. 29.
    R.C.Y. Auyeung, H. Kim, A.J. Birnbaum, M. Zalalutdinov, S.A. Mathews, A. Pique, Appl. Phys. A Mater. Sci. Process. 97(3), 513–519 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    A.J. Birnbaum, H. Kim, N.A. Charipar, A. Pique, Appl. Phys. A Mater. Sci. Process. 99(4), 711–716 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    W.A. Tolbert, I.-Y.S. Lee, M.M. Doxtader, E.W. Ellis, D.D. Dlott, J. Imaging Sci. Technol. 37(4), 411–421 (1993)Google Scholar
  32. 32.
    V. Dinca, R. Fardel, F. Di Pietrantonio, D. Cannatà, M. Benetti, E. Verona, A. Palla-Papavlu, M. Dinescu, T. Lippert, Sens. Lett. 8(3), 436–440 (2010)CrossRefGoogle Scholar
  33. 33.
    C. Boutopoulos, V. Tsouti, D. Goustouridis, S. Chatzandroulis, I. Zergiotti, Appl. Phys. Lett. 93, 191109 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    J.M. Fernandez-Pradas, M. Colina, P. Serra, J. Dominguez, J.L. Morenza, Thin Solid Films 453–454, 27–30 (2004)CrossRefGoogle Scholar
  35. 35.
    B. Hopp, T. Smausz, N. Kresz, N. Barna, Z. Bor, L. Kolozsvári, D.B. Chrisey, A. Szabó, A. Nógrádi, Tissue Eng. 11, 1817–1823 (2005)CrossRefGoogle Scholar
  36. 36.
    J.A. Barron, P. Wu, H.D. Ladouceur, B.R. Ringeisen, Biomed. Microdevices 6(2), 139–147 (2004)CrossRefGoogle Scholar
  37. 37.
    B. Hopp, T. Smausz, Zs Antal, N. Kresz, Zs Bor, D. Chrisey, J. Appl. Phys. 96(6), 3478–3481 (2004)ADSCrossRefGoogle Scholar
  38. 38.
    N.T. Kattamis, P.E. Purnick, R. Weiss, C.B. Arnold, Appl. Phys. Lett. 91, 171120 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    N.T. Kattamis, N.D. McDaniel, S. Bernhard, C.B. Arnold, Appl. Phys. Lett. 94, 103306 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    A. Palla-Papavlu, I. Paraico, J. Shaw-Stewart, V. Dinca, T. Savopol, E. Kovacs, T. Lippert, A. Wokaun, M. Dinescu, Appl. Phys. A Mater. Sci. Process. 102(3), 651–659 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    D. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, R. Eason, EPL (Europhys. Lett.) 83, 38003 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    A. Doraiswamy, R. Narayan, T. Lippert, L. Urech, A. Wokaun, M. Nagel, B. Hopp, M. Dinescu, R. Modi, R. Auyeung, D. Chrisey, Appl. Surf. Sci. 252, 4743–4747 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    T. Mattle, J. Shaw-Stewart, C.W. Schneider, T. Lippert, A. Wokaun, Appl. Surf. Sci. 258, 9352–9354 (2012)ADSCrossRefGoogle Scholar
  44. 44.
    F. Di Pietrantonio, M. Benetti, D. Cannata, E. Verona, A. Palla-Papavlu, V. Dinca, M. Dinescu, T. Mattle, T. Lippert, Sens. Actuators, B 174, 158–167 (2012)CrossRefGoogle Scholar
  45. 45.
    S. Latsch, H. Hiraoka, Mat. Res. Soc. Symp. Proc. 304, 103–110 (1993)CrossRefGoogle Scholar
  46. 46.
    M. Farsari, V. Dinca, M. Dinescu, T.S. Drakakis, C. Fotakis, Proc. of SPIE 6606, 66061F (2007)ADSCrossRefGoogle Scholar
  47. 47.
    V. Dinca, E. Kasotakis, J. Catherine, A. Mourka, A. Mitraki, A. Popescu, M. Dinescu, M. Farsari, C. Fotakis, Appl. Surf. Sci. 254, 1160–1163 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    V. Dinca, A. Ranella, A. Popescu, M. Dinescu, M. Farsari, C. Fotakis, Appl. Surf. Sci. 254, 1164–1168 (2007)ADSCrossRefGoogle Scholar
  49. 49.
    R. Fardel, P. Feurer, T. Lippert, M. Nagel, F. Nuesch, A. Wokaun, Appl. Surf. Sci. 254, 1332–1337 (2007)ADSCrossRefGoogle Scholar
  50. 50.
    R. Fardel, M. Nagel, F. Nüesch, T. Lippert, A. Wokaun, Appl. Phys. Lett. 91, 061103-(1–3) (2007)ADSCrossRefGoogle Scholar
  51. 51.
    J. Xu, J. Liu, D. Cui, M. Gerhold, A. Wang, M. Nagel, T. Lippert, Nanotechnology 18(2), 025403 (2007)ADSCrossRefGoogle Scholar
  52. 52.
    R. Fardel, M. Nagel, F. Nuesch, T. Lippert, A. Wokaun, Appl. Surf. Sci. 254, 1322–1326 (2007)ADSCrossRefGoogle Scholar
  53. 53.
    T.V. Kononenko, I.A. Nagovitsyn, G.K. Chudinova, Bull. Lebedev. Phys. Inst. 36(2), 29–33 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    L. Rapp, C. Cibert, A.P. Alloncle, P. Delaporte, Appl. Surf. Sci. 255, 5439–5443 (2009)ADSCrossRefGoogle Scholar
  55. 55.
    J. Shaw-Stewart, T. Lippert, M. Nagel, F. Nuesch, A. Wokaun, ACS Appl. Mater. Interfaces 3, 309–316 (2011)CrossRefGoogle Scholar
  56. 56.
    J. Shaw-Stewart, T. Lippert, M. Nagel, F. Nuesch, A. Wokaun, ACS Appl. Mater. Interfaces 4, 3535–3541 (2012)CrossRefGoogle Scholar
  57. 57.
    V. Dinca, A. Palla Papavlu, M. Dinescu, J. Shaw-Stewart, T. Lippert, F. Di Pietrantonio, D. Cannata, M. Benetti, E. Verona, Appl. Phys. A 101, 559–565 (2010)ADSCrossRefGoogle Scholar
  58. 58.
    V. Dinca, A. Palla Papavlu, A. Matei, C. Luculescu, M. Dinescu, T. Lippert, F. Di Pietrantonio, D. Cannata, M. Benetti, E. Verona, Appl. Phys. A 101, 429–434 (2010)ADSCrossRefGoogle Scholar
  59. 59.
    D. Cannata, M. Benetti, F. Di Pietrantonio, E. Verona, A. Palla Papavlu, V. Dinca, M. Dinescu, T. Lippert, Sens. Actuators, B 173, 32–39 (2012)CrossRefGoogle Scholar
  60. 60.
    V. Dinca, T. Mattle, A. Palla Papavlu, L. Rusen, C. Luculescu, T. Lippert, M. Dinescu, Appl. Surf. Sci. 278, 190–197 (2013)ADSCrossRefGoogle Scholar
  61. 61.
    A. Palla-Papavlu, V. Dinca, I. Paraico, A. Moldovan, J. Shaw-Stewart, C.W. Schneider, E. Kovacs, T. Lippert, M. Dinescu, J. Appl. Phys. 108, 033111–033116 (2010)ADSCrossRefGoogle Scholar
  62. 62.
    A. Palla Papavlu, V. Dinca, C. Luculescu, J. Shaw-Stewart, M. Nagel, M. Dinescu, J. Opt. 12, 124114–124119 (2010)CrossRefGoogle Scholar
  63. 63.
    L. Rapp, A.K. Diallo, S. Nénon, A.P. Alloncle, C. Videlot-Ackermann, F. Fages, M. Nagel, T. Lippert, P. Delaporte, Thin Solid Films 520, 3043–3047 (2012)ADSCrossRefGoogle Scholar
  64. 64.
    T. Inui, R. Mandamparambil, T. Araki, R. Abbel, H. Koga, M. Nogia, K. Suganuma, RSC Advances 5, 77942–77947 (2015)CrossRefGoogle Scholar
  65. 65.
    A. Palla-Papavlu, M. Dinescu, A. Wokaun, T. Lippert, Appl. Phys. A 117, 371–376 (2014)ADSCrossRefGoogle Scholar
  66. 66.
    J. Chen, A. Palla Papavlu, Y. Li, L. Chen, M. Dobeli, D. Stender, S. Populoh, A. Weidenkaff, C.W. Schenider, A. Wokaun, T. Lippert, Appl. Phys. Lett. 104, 231907-(1–3) (2014)ADSCrossRefGoogle Scholar
  67. 67.
    T. Mattle, A. Hintennach, T. Lippert, A. Wokaun, Appl. Phys. A 110, 309–316 (2013)ADSCrossRefGoogle Scholar
  68. 68.
    A. Palla Papavlu, T. Mattle, S. Temmel, U. Lehmann, A. Hintennach, A. Grisel, A. Wokaun, T. Lippert, Sci. Rep. 6, 25144 (1–9) (2016)Google Scholar
  69. 69.
    B. Mitu, A. Matei, M. Filipescu, A. Palla Papavlu, A. Bercea, T. Lippert, M. Dinescu, J. Phys. D Appl. Phys. 50, 115601 (2017)ADSCrossRefGoogle Scholar
  70. 70.
    D. Young, R.C.Y. Auyeung, A. Pique, D.B. Chrisey, D. Dlott, Appl. Phys. Lett. 78, 3169 (2001)ADSCrossRefGoogle Scholar
  71. 71.
    J.A. Barron, H.D. Young, D.D. Dlott, M.M. Darfler, D.B. Krizman, B.R. Ringeisen, Proteomics 5, 4138 (2005)CrossRefGoogle Scholar
  72. 72.
    M. Colina, M. Duocastella, J.M. Fernandez-Pradas, P. Serra, J.L. Morenza, J. Appl. Phys. 99, 084909 (2006)ADSCrossRefGoogle Scholar
  73. 73.
    M. Duocastella, J.M. Fernandez-Pradas, J.L. Morenza, P. Serra, J. Appl. Phys. 106, 084907 (2009)ADSCrossRefGoogle Scholar
  74. 74.
    A. Palla-Papavlu, J. Shaw-Stewart, T. Mattle, V. Dinca, T. Lippert, A. Wokaun, M. Dinescu, Appl. Surf. Sci. 278, 180–184 (2013)ADSCrossRefGoogle Scholar
  75. 75.
    M. Nagel, R. Fardel, P. Feurer, M. Häberli, F. Nüesch, T.K. Lippert, A. Wokaun, Appl. Phys. A 92, 781–789 (2008)ADSCrossRefGoogle Scholar
  76. 76.
    J. Shaw-Stewart, T. Mattle, T. Lippert, M. Nagel, F. Nuescu, A. Wokaun, Appl. Surf. Sci. 278, 341–346 (2013)ADSCrossRefGoogle Scholar
  77. 77.
    F. Di Pietrantonio, M. Benetti, D. Cannatà, E. Verona, A. Palla-Papavlu, J.M. Fernández-Pradas, P. Serra, M. Staiano, A. Varriale, S. D’Auria, Biosens. Bioelectron. 67, 516–523 (2015)CrossRefGoogle Scholar
  78. 78.
    A. Palla Papavlu, V. Dinca, M. Dinescu, Chapter 14 Laser printing of proteins and biomaterials, in Laser Printing of Functional Materials: Electronics, 3D Microfabrication and Biomedicine, 1st edn, ed. by A. Piqué, S. Pere (©2017 Wiley-VCH Verlag GmbH & Co. KGaA), pp. 329–348. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaAGoogle Scholar
  79. 79.
    A. Palla Papavlu, T. Lippert, Chapter 3 LIFT using a dynamic release layer, in Laser Printing of Functional Materials: Electronics, 3D Microfabrication and Biomedicine, 1st edn, ed. by A. Piqué, S. Pere (©2017 Wiley-VCH Verlag GmbH & Co. KGaA). Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaAGoogle Scholar
  80. 80.
    R.B. Greenwald, J. Contr, Release 74, 159–171 (2001)CrossRefGoogle Scholar
  81. 81.
    J. Meng, B. Xiao, Y. Zhang, J. Liu, H. Xue, J. Lei, H. Kong, Y. Huang, Z. Jin, N. Gu, H. Xu, Sci Rep. 3, 2655 (2013)ADSCrossRefGoogle Scholar
  82. 82.
    F. McLaughlin, J. Mackintosh, B.P. Hayes, A. McLaren, I.J. Uings, P. Salmon, J. Humphreys, E. Meldrum, S.N. Farrow, Bone 30, 924–930 (2002)CrossRefGoogle Scholar
  83. 83.
    S.C. Balmert, S.R. Little, Adv. Mater. 24, 3757–3778 (2012)CrossRefGoogle Scholar
  84. 84.
    L. Ghasemi-Mobarakeh, M.P. Prabhakaran, M. Morshed, M.H. Nasr-Esfahani, H. Baharvand, S. Kiani, S.S. Al-Deyab, S. Ramakrishna, J. Tissue Eng. Regen. Med. 5, 17–35 (2011)CrossRefGoogle Scholar
  85. 85.
    J. Zhang, K.G. Neoh, X. Hu, E.T. Kang, W. Wang, Biotechnol. Bioeng. 110, 1466–1475 (2013)CrossRefGoogle Scholar
  86. 86.
    W.W. Hu, Y.T. Hsu, Y.C. Cheng, C. Li, R.C. Ruoh, C.C. Chien, C.A. Chung, C.W. Tsao, Mater. Sci. Eng., C 37, 28–36 (2014)CrossRefGoogle Scholar
  87. 87.
    S. Meng, Z. Zhang, M. Rouabhia, J. Bone, Miner. Metab. 29, 535–544 (2011)CrossRefGoogle Scholar
  88. 88.
    I.A. Paun, F. Stokker-Cheregi, C.R. Luculescu, A.M. Acasandrei, V. Ion, M. Zamfirescu, C.C. Mustaciosu, M. Mihailescu, M. Dinescu, Mater. Sci. Eng. C Mater. Biol. Appl. 55, 61–69 (2015)CrossRefGoogle Scholar
  89. 89.
    I.A. Paun, M. Zamfirescu, C.R. Luculescu et al., Appl. Surf. Sci. 392, 321–331 (2017)ADSCrossRefGoogle Scholar
  90. 90.
    I.A. Paun, A.M. Acasandrei, C.R. Luculescu, C.C. Mustaciosu, V. Ion, M. Mihailescu, E. Vasile, M. Dinescu, Appl. Surf. Sci. 357, 975–984 (2015)ADSCrossRefGoogle Scholar
  91. 91.
    X. Jiang, Y. Marois, A. Traoré, D. Tessier, L.H. Dao, R. Guidoin, Z. Zhang, Tissue Eng. 8, 635–647 (2002)CrossRefGoogle Scholar
  92. 92.
    G. Shi, M. Rouabhia, Z. Wang, L.H. Dao, Z. Zhang, Biomaterials 25, 2477–2488 (2004)CrossRefGoogle Scholar
  93. 93.
    S.S. Mihardja, R.E. Sievers, R.J. Lee, Biomaterials 29, 4205–4210 (2008)CrossRefGoogle Scholar
  94. 94.
    E. De Giglio, L. Sabbatini, S. Colucci, G. Zambonin, J. Biomater. Sci. Polym. Edn 11, 1073–1083 (2000)CrossRefGoogle Scholar
  95. 95.
    E. De Giglio, S. Cometa, C.D. Calvano, L. Sabbatini, P.G. Zambonin, S. Colucci, A.D. Benedetto, G. Colaianni, J. Mater. Sci. Mater. Med. 18, 1781–1789 (2007)CrossRefGoogle Scholar
  96. 96.
    B. Zinger, L.L. Miller, J. Am. Chem. Soc. 106, 6861–6863 (1984)CrossRefGoogle Scholar
  97. 97.
    L.L. Miller, G.A. Smith, A.C. Chang, Q.X. Zhou, J. Contr. Rel. 6, 293–296 (1987)CrossRefGoogle Scholar
  98. 98.
    M. Pyo, G. Maeder, R.T. Kennedy, J.R. Reynolds, J. Electroanal. Chem. 368, 329–332 (1994)CrossRefGoogle Scholar
  99. 99.
    S.B. Adeloju, S.J. Shaw, G.G. Wallace, Anal. Chim. Acta 341, 155–160 (1997)CrossRefGoogle Scholar
  100. 100.
    M.R. Abidian, D.H. Kim, D.C. Martin, Adv. Mater. 8, 405–409 (2006)CrossRefGoogle Scholar
  101. 101.
    P.M. George, D.A. LaVan, J.A. Burdick, C.Y. Chen, E. Liang, R. Langer, Adv. Mater. 18, 577–581 (2006)CrossRefGoogle Scholar
  102. 102.
    Y. Li, K.G. Neoh, E.T. Kang, J. Biomed, Mater. Res. Part A 73, 171–181 (2005)CrossRefGoogle Scholar
  103. 103.
    B. Massoumi, A.A. Entezami, Eur. Polym. J. 37, 1015–1020 (2001)CrossRefGoogle Scholar
  104. 104.
    F. Langenbach, J. Handsche, Stem Cell Res. Ther. 4, 117–123 (2013)CrossRefGoogle Scholar
  105. 105.
    S. Walsh, G.R. Jordan, C. Jefferiss, K. Stewart, J. Beresford, Rheumatology 40, 74–83 (2003)CrossRefGoogle Scholar
  106. 106.
    I.A. Paun, A. Moldovan, C.R. Luculescu, M. Dinescu, Appl. Surf. Sci. 257, 10780–10788 (2011)ADSCrossRefGoogle Scholar
  107. 107.
    M.R. Abidian, D.H. Kim, D.C. Martin, Adv. Mater. 18, 405–409 (2006)CrossRefGoogle Scholar
  108. 108.
    I. Kalajzic et al., J. Biol. Chem. 280, 24618–24626 (2005)CrossRefGoogle Scholar
  109. 109.
    G. Teti, A. Bigi, M. Mattioli-Belmonte, R. Giardino, M. Fini, A. Mazzotti, M. Falconi, J. Life Sci. 7, 965–970 (2013)Google Scholar
  110. 110.
    H.C. Anderson, Lab. Invest. 60, 320–330 (1989)Google Scholar
  111. 111.
    A. Nakamura, Y. Dohi, M. Akahane, H. Ohgushi, H. Nakajima, H. Funaoka, Y. Takakura, Tiss. Eng. Part C: Meth. 15, 169–180 (2009)CrossRefGoogle Scholar
  112. 112.
    S.L. Cheng, J.W. Yang, L. Rifas, S.F. Zhang, L.V. Avioli, Endocrinology 134, 277–286 (1994)CrossRefGoogle Scholar
  113. 113.
    J.J. Alm, T.J. Heino, T.A. Hentunen, H.K. Väänänen, H.T. Aro, Tissue Eng. Part C: Meth. 18, 658–666 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Flavian Stokker-Cheregi
    • 1
  • Alexandra Palla-Papavlu
    • 1
  • Irina Alexandra Paun
    • 2
    • 3
  • Thomas Lippert
    • 4
    • 5
  • Maria Dinescu
    • 1
  1. 1.Lasers DepartmentNational Institute for Lasers, Plasma, and Radiation PhysicsMagureleRomania
  2. 2.CETAL DepartmentNational Institute for Lasers, Plasma, and Radiation PhysicsMagureleRomania
  3. 3.Faculty of Applied SciencesUniversity Politechnica of BucharestBucharestRomania
  4. 4.Research with Neutrons and Muons DivisionPaul Scherrer InstitutVilligen PSISwitzerland
  5. 5.Laboratory of Inorganic ChemistryETH ZürichZürichSwitzerland

Personalised recommendations