Advertisement

Cell Movement pp 211-258 | Cite as

Lamellipodia in Stationary and Fluctuating States

  • Danielle Holz
  • Laura M. McMillen
  • Gillian L. Ryan
  • Dimitrios VavylonisEmail author
Chapter
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

We review recent mathematical models describing the diffusive transport, reaction, and turnover of actin and regulators at the leading edge of motile cells. These models are motivated by experimental results using cells with flat, steady lamellipodia studied by Single Molecule Speckle microscopy. The same cells can also be made to exhibit protruding and retracting lamellipodia, which demonstrate how changes in actin polymerization lead to changes in the rate of protrusion. The second part of this chapter provides a description of these fluctuations as an excitable actin system pushing against the cell membrane by polymerization.

Notes

Acknowledgements

The work for this review was supported by NIH grant R01GM114201. We thank Matt Smith, Naoki Watanabe, Sawako Yamashiro, Daisuke Taniguchi, and Eric Vitriol for numerous discussions.

References

  1. 1.
    Abraham, V.C., Krishnamurthi, V., Taylor, D.L., Lanni, F.: The actin-based nanomachine at the leading edge of migrating cells. Biophysical Journal 77, 1721–1732 (1999)CrossRefGoogle Scholar
  2. 2.
    Adler, Y., Givli, S.: Closing the loop: Lamellipodia dynamics from the perspective of front propagation. Phys Rev E Stat Nonlin Soft Matter Phys 88(4 Pt 1), 042,708 (2013)CrossRefGoogle Scholar
  3. 3.
    Alexandrova, A.Y., Arnold, K., Schaub, S., Vasiliev, J.M., Meister, J.J., Bershadsky, A.D., Verkhovsky, A.B.: Comparative dynamics of retrograde actin flow and focal adhesions: formation of nascent adhesions triggers transition from fast to slow flow. PloS One 3, e3234 (2008)CrossRefGoogle Scholar
  4. 4.
    Allard, J., Mogilner, A.: Traveling waves in actin dynamics and cell motility. Current opinion in cell biology 25, 107–115 (2013)CrossRefGoogle Scholar
  5. 5.
    Anderson, T.W., Vaughan, A.N., Cramer, L.P.: Retrograde flow and myosin ii activity within the leading cell edge deliver f-actin to the lamella to seed the formation of graded polarity actomyosin ii filament bundles in migrating fibroblasts. Molecular biology of the cell 19, 5006–5018 (2008)CrossRefGoogle Scholar
  6. 6.
    Aroush, D.R.B., Ofer, N., Abu-Shah, E., Allard, J., Krichevsky, O., Mogilner, A., Keren, K.: Actin turnover in lamellipodial fragments. Current Biology 27, 2963–2973 (2017)CrossRefGoogle Scholar
  7. 7.
    Bailly, M., Macaluso, F., Cammer, M., Chan, A., Segall, J.E., Condeelis, J.S.: Relationship between arp2/3 complex and the barbed ends of actin filaments at the leading edge of carcinoma cells after epidermal growth factor stimulation. The Journal of cell biology 145, 331–345 (1999)CrossRefGoogle Scholar
  8. 8.
    Barnhart, E.L., Allard, J., Lou, S.S., Theriot, J.A., Mogilner, A.: Adhesion-dependent wave generation in crawling cells. Current biology : CB 27, 27–38 (2017)CrossRefGoogle Scholar
  9. 9.
    Bernstein, B.W., Bamburg, J.R.: Adf/cofilin: a functional node in cell biology. Trends in cell biology 20, 187–195 (2010)CrossRefGoogle Scholar
  10. 10.
    Blanchoin, L., Boujemaa-Paterski, R., Sykes, C., Plastino, J.: Actin dynamics, architecture, and mechanics in cell motility. Physiol Rev 94(1), 235–263 (2014)CrossRefGoogle Scholar
  11. 11.
    Burnette, D.T., Manley, S., Sengupta, P., Sougrat, R., Davidson, M.W., Kachar, B., Lippincott-Schwartz, J.: A role for actin arcs in the leading-edge advance of migrating cells. Nature cell biology 13, 371–381 (2011)CrossRefGoogle Scholar
  12. 12.
    Cai, L., Makhov, A.M., Schafer, D.A., Bear, J.E.: Coronin 1b antagonizes cortactin and remodels arp2/3-containing actin branches in lamellipodia. Cell 134, 828–842 (2008)CrossRefGoogle Scholar
  13. 13.
    Campàs, O., Mahadevan, L., Joanny, J.F.: Actin network growth under load. Biophysical journal 102, 1049–1058 (2012)CrossRefGoogle Scholar
  14. 14.
    Carrero, G., Crawford, E., Hendzel, M.J., de Vries, G.: Characterizing fluorescence recovery curves for nuclear proteins undergoing binding events. Bulletin of mathematical biology 66, 1515–1545 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Chan, A.Y., Raft, S., Bailly, M., Wyckoff, J.B., Segall, J.E., Condeelis, J.S.: Egf stimulates an increase in actin nucleation and filament number at the leading edge of the lamellipod in mammary adenocarcinoma cells. Journal of cell science 111 ( Pt 2), 199–211 (1998)Google Scholar
  16. 16.
    Chan, C., Beltzner, C.C., Pollard, T.D.: Cofilin dissociates arp2/3 complex and branches from actin filaments. Current biology : CB 19, 537–545 (2009)CrossRefGoogle Scholar
  17. 17.
    Cirit, M., Krajcovic, M., Choi, C.K., Welf, E.S., Horwitz, A.F., Haugh, J.M.: Stochastic model of integrin-mediated signaling and adhesion dynamics at the leading edges of migrating cells. PLoS computational biology 6, e1000,688 (2010)CrossRefGoogle Scholar
  18. 18.
    Craig, E.M., Van Goor, D., Forscher, P., Mogilner, A.: Membrane tension, myosin force, and actin turnover maintain actin treadmill in the nerve growth cone. Biophysical journal 102, 1503–1513 (2012)CrossRefGoogle Scholar
  19. 19.
    Cramer, L., Briggs, L., Dawe, H.: Use of fluorescently labelled deoxyribonuclease i to spatially measure g-actin levels in migrating and non-migrating cells. Cytoskeleton 51(1), 27–38 (2002)CrossRefGoogle Scholar
  20. 20.
    Danuser, G., Allard, J., Mogilner, A.: Mathematical modeling of eukaryotic cell migration: insights beyond experiments. Annu Rev Cell Dev Biol 29, 501–528 (2013)CrossRefGoogle Scholar
  21. 21.
    Doubrovinski, K., Kruse, K.: Cell motility resulting from spontaneous polymerization waves. Physical review letters 107, 258,103 (2011)CrossRefGoogle Scholar
  22. 22.
    Driscoll, M.K., McCann, C., Kopace, R., Homan, T., Fourkas, J.T., Parent, C., Losert, W.: Cell shape dynamics: From waves to migration. PLoS Computational Biology 8, e1002,392 (2012)CrossRefGoogle Scholar
  23. 23.
    Edwards, M., Liang, Y., Kim, T., Cooper, J.A.: Physiological role of the interaction between carmil1 and capping protein. Mol Biol Cell 24(19), 3047–3055 (2013)CrossRefGoogle Scholar
  24. 24.
    Enculescu, M., Sabouri-Ghomi, M., Danuser, G., Falcke, M.: Modeling of protrusion phenotypes driven by the actin-membrane interaction. Biophysical journal 98, 1571–1581 (2010)CrossRefGoogle Scholar
  25. 25.
    Engelke, H., Heinrich, D., Rädler, J.O.: Probing gfp-actin diffusion in living cells using fluorescence correlation spectroscopy. Physical biology 7, 046,014 (2010)CrossRefGoogle Scholar
  26. 26.
    Fan, Y., Eswarappa, S.M., Hitomi, M., Fox, P.L.: Myo1c facilitates g-actin transport to the leading edge of migrating endothelial cells. J Cell Biol 198(1), 47–55 (2012)CrossRefGoogle Scholar
  27. 27.
    Fujiwara, I., Remmert, K., Hammer 3rd, J.A.: Direct observation of the uncapping of capping protein-capped actin filaments by carmil homology domain 3. J Biol Chem 285(4), 2707–2720 (2010)CrossRefGoogle Scholar
  28. 28.
    Fujiwara, I., Remmert, K., Piszczek, G., Hammer, J.A.: Capping protein regulatory cycle driven by carmil and v-1 may promote actin network assembly at protruding edges. Proc Natl Acad Sci U S A 111(19), E1970–E1979 (2014)CrossRefGoogle Scholar
  29. 29.
    Giannone, G., Dubin-Thaler, B.J., Döbereiner, H.G., Kieffer, N., Bresnick, A.R., Sheetz, M.P.: Periodic lamellipodial contractions correlate with rearward actin waves. Cell 116, 431–443 (2004)CrossRefGoogle Scholar
  30. 30.
    Giannone, G., Dubin-Thaler, B.J., Rossier, O., Cai, Y., Chaga, O., Jiang, G., Beaver, W., Döbereiner, H.G., Freund, Y., Borisy, G., Sheetz, M.P.: Lamellipodial actin mechanically links myosin activity with adhesion-site formation. Cell 128, 561–575 (2007)CrossRefGoogle Scholar
  31. 31.
    Gov, N.S., Gopinathan, A.: Dynamics of membranes driven by actin polymerization. Biophysical journal 90, 454–469 (2006)CrossRefGoogle Scholar
  32. 32.
    Hecht, I., Kessler, D.A., Levine, H.: Transient localized patterns in noise-driven reaction-diffusion systems. Physical review letters 104, 158,301 (2010)CrossRefGoogle Scholar
  33. 33.
    Heinemann, F., Doschke, H., Radmacher, M.: Keratocyte lamellipodial protrusion is characterized by a concave force-velocity relation. Biophysical journal 100, 1420–1427 (2011)CrossRefGoogle Scholar
  34. 34.
    Henty, J.L., Bledsoe, S.W., Khurana, P., Meagher, R.B., Day, B., Blanchoin, L., Staiger, C.J.: Arabidopsis actin depolymerizing factor4 modulates the stochastic dynamic behavior of actin filaments in the cortical array of epidermal cells. The Plant cell 23, 3711–3726 (2011)CrossRefGoogle Scholar
  35. 35.
    Higashida, C., Suetsugu, S., Tsuji, T., Monypenny, J., Narumiya, S., Watanabe, N.: G-actin regulates rapid induction of actin nucleation by mdia1 to restore cellular actin polymers. Journal of cell science 121, 3403–3412 (2008)CrossRefGoogle Scholar
  36. 36.
    Higgs, H.N., Pollard, T.D.: Regulation of actin filament network formation through arp2/3 complex: activation by a diverse array of proteins. Annual review of biochemistry 70, 649–676 (2001)CrossRefGoogle Scholar
  37. 37.
    Holmes, W.R., Edelstein-Keshet, L.: A comparison of computational models for eukaryotic cell shape and motility. PLoS computational biology 8, e1002,793 (2012)CrossRefGoogle Scholar
  38. 38.
    Hotulainen, P., Paunola, E., Vartiainen, M.K., Lappalainen, P.: Actin-depolymerizing factor and cofilin-1 play overlapping roles in promoting rapid f-actin depolymerization in mammalian nonmuscle cells. Molecular biology of the cell 16, 649–664 (2005)CrossRefGoogle Scholar
  39. 39.
    Hu, L., Papoian, G.A.: Mechano-chemical feedbacks regulate actin mesh growth in lamellipodial protrusions. Biophys J 98(8), 1375–1384 (2010)CrossRefGoogle Scholar
  40. 40.
    Hu, L., Papoian, G.A.: How does the antagonism between capping and anti-capping proteins affect actin network dynamics? J Phys Condens Matter 23(37), 374,101 (2011)CrossRefGoogle Scholar
  41. 41.
    Huang, C.H., Tang, M., Shi, C., Iglesias, P.A., Devreotes, P.N.: An excitable signal integrator couples to an idling cytoskeletal oscillator to drive cell migration. Nature cell biology 15, 1307–1316 (2013)CrossRefGoogle Scholar
  42. 42.
    Huber, F., Käs, J., Stuhrmann, B.: Growing actin networks form lamellipodium and lamellum by self-assembly. Biophys J 95(12), 5508–5523 (2008)CrossRefGoogle Scholar
  43. 43.
    Inagaki, N., Katsuno, H.: Actin waves: Origin of cell polarization and migration? Trends in cell biology 27, 515–526 (2017)CrossRefGoogle Scholar
  44. 44.
    Iwasa, J.H., Mullins, R.D.: Spatial and temporal relationships between actin-filament nucleation, capping, and disassembly. Curr Biol 17(5), 395–406 (2007)CrossRefGoogle Scholar
  45. 45.
    Ji, L., Lim, J., Danuser, G.: Fluctuations of intracellular forces during cell protrusion. Nature cell biology 10, 1393–1400 (2008)CrossRefGoogle Scholar
  46. 46.
    Kapustina, M., Vitriol, E., Elston, T.C., Loew, L.M., Jacobson, K.: Modeling capping protein frap and cali experiments reveals in vivo regulation of actin dynamics. Cytoskeleton (Hoboken) 67(8), 519–534 (2010)Google Scholar
  47. 47.
    Kawska, A., Carvalho, K., Manzi, J., Boujemaa-Paterski, R., Blanchoin, L., Martiel, J.L., Sykes, C.: How actin network dynamics control the onset of actin-based motility. Proc Natl Acad Sci U S A 109(36), 14,440–14,445 (2012)CrossRefGoogle Scholar
  48. 48.
    Keren, K., Pincus, Z., Allen, G.M., Barnhart, E.L., Marriott, G., Mogilner, A., Theriot, J.A.: Mechanism of shape determination in motile cells. Nature 453, 475–480 (2008)CrossRefGoogle Scholar
  49. 49.
    Kiuchi, T., Nagai, T., Ohashi, K., Mizuno, K.: Measurements of spatiotemporal changes in g-actin concentration reveal its effect on stimulus-induced actin assembly and lamellipodium extension. J Cell Biol 193(2), 365–380 (2011)CrossRefGoogle Scholar
  50. 50.
    Kiuchi, T., Ohashi, K., Kurita, S., Mizuno, K.: Cofilin promotes stimulus-induced lamellipodium formation by generating an abundant supply of actin monomers. The Journal of cell biology 177, 465–476 (2007)CrossRefGoogle Scholar
  51. 51.
    Koestler, S.A., Rottner, K., Lai, F., Block, J., Vinzenz, M., Small, J.V.: F- and g-actin concentrations in lamellipodia of moving cells. PloS one 4, e4810 (2009)CrossRefGoogle Scholar
  52. 52.
    Lai, F.P.L., Szczodrak, M., Block, J., Faix, J., Breitsprecher, D., Mannherz, H.G., Stradal, T.E.B., Dunn, G.A., Small, J.V., Rottner, K.: Arp2/3 complex interactions and actin network turnover in lamellipodia. EMBO J 27(7), 982–992 (2008)CrossRefGoogle Scholar
  53. 53.
    Le Clainche, C., Carlier, M.F.: Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiological reviews 88, 489–513 (2008)CrossRefGoogle Scholar
  54. 54.
    Lee, C.W., Vitriol, E.A., Shim, S., Wise, A.L., Velayutham, R.P., Zheng, J.Q.: Dynamic localization of g-actin during membrane protrusion in neuronal motility. Curr Biol 23(12), 1046–1056 (2013)CrossRefGoogle Scholar
  55. 55.
    Lee, K., Elliott, H.L., Oak, Y., Zee, C.T., Groisman, A., Tytell, J.D., Danuser, G.: Functional hierarchy of redundant actin assembly factors revealed by fine-grained registration of intrinsic image fluctuations. Cell systems 1(1), 37–50 (2015)CrossRefGoogle Scholar
  56. 56.
    Lewalle, A., Fritzsche, M., Wilson, K., Thorogate, R., Duke, T., Charras, G.: A phenomenological density-scaling approach to lamellipodial actin dynamics. Interface Focus 4(6), 20140,006 (2014)CrossRefGoogle Scholar
  57. 57.
    Lieber, A.D., Yehudai-Resheff, S., Barnhart, E.L., Theriot, J.A., Keren, K.: Membrane tension in rapidly moving cells is determined by cytoskeletal forces. Current biology : CB 23, 1409–1417 (2013)CrossRefGoogle Scholar
  58. 58.
    Liu, X., Welf, E.S., Haugh, J.M.: Linking morphodynamics and directional persistence of t lymphocyte migration. Journal of the Royal Society, Interface 12 (2015)CrossRefGoogle Scholar
  59. 59.
    Machacek, M., Danuser, G.: Morphodynamic profiling of protrusion phenotypes. Biophysical journal 90, 1439–1452 (2006)CrossRefGoogle Scholar
  60. 60.
    Mahaffy, R.E., Pollard, T.D.: Kinetics of the formation and dissociation of actin filament branches mediated by arp2/3 complex. Biophysical journal 91, 3519–3528 (2006)CrossRefGoogle Scholar
  61. 61.
    McGrath, J.L., Tardy, Y., Dewey Jr, C., Meister, J.J., Hartwig, J.H.: Simultaneous measurements of actin filament turnover, filament fraction, and monomer diffusion in endothelial cells. Biophys J 75(4), 2070–2078 (1998)CrossRefGoogle Scholar
  62. 62.
    McMillen, L.M., Vavylonis, D.: Model of turnover kinetics in the lamellipodium: implications of slow- and fast- diffusing capping protein and arp2/3 complex. Physical biology 13, 066,009 (2016)CrossRefGoogle Scholar
  63. 63.
    Meinhardt, H., Gierer, A.: Pattern formation by local self-activation and lateral inhibition. BioEssays : news and reviews in molecular, cellular and developmental biology 22, 753–760 (2000)CrossRefGoogle Scholar
  64. 64.
    Michalski, P.J., Carlsson, A.E.: The effects of filament aging and annealing on a model lamellipodium undergoing disassembly by severing. Phys Biol 7(2), 026,004 (2010)CrossRefGoogle Scholar
  65. 65.
    Millius, A., Watanabe, N., Weiner, O.D.: Diffusion, capture and recycling of scar/wave and arp2/3 complexes observed in cells by single-molecule imaging. J Cell Sci 125(Pt 5), 1165–1176 (2012)CrossRefGoogle Scholar
  66. 66.
    Miyoshi, T., Tsuji, T., Higashida, C., Hertzog, M., Fujita, A., Narumiya, S., Scita, G., Watanabe, N.: Actin turnover-dependent fast dissociation of capping protein in the dendritic nucleation actin network: evidence of frequent filament severing. J Cell Biol 175(6), 947–955 (2006)CrossRefGoogle Scholar
  67. 67.
    Mogilner, A., Edelstein-Keshet, L.: Regulation of actin dynamics in rapidly moving cells: a quantitative analysis. Biophys J 83(3), 1237–1258 (2002)CrossRefGoogle Scholar
  68. 68.
    Mogilner, A., Keren, K.: The shape of motile cells. Curr Biol 19(17), R762–R771 (2009)CrossRefGoogle Scholar
  69. 69.
    Mogilner, A., Oster, G.: Cell motility driven by actin polymerization. Biophysical journal 71, 3030–3045 (1996)CrossRefGoogle Scholar
  70. 70.
    Moraru, I.I., Schaff, J.C., Slepchenko, B.M., Blinov, M.L., Morgan, F., Lakshminarayana, A., Gao, F., Li, Y., Loew, L.M.: Virtual cell modelling and simulation software environment. IET Systems Biology 2(5), 352–362 (2008)CrossRefGoogle Scholar
  71. 71.
    Mullins, R.D., Heuser, J.A., Pollard, T.D.: The interaction of arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proceedings of the National Academy of Sciences of the United States of America 95, 6181–6186 (1998)CrossRefGoogle Scholar
  72. 72.
    Novak, I.L., Slepchenko, B.M., Mogilner, A.: Quantitative analysis of g-actin transport in motile cells. Biophys J 95(4), 1627–1638 (2008)CrossRefGoogle Scholar
  73. 73.
    Ohashi, K., Fujiwara, S., Watanabe, T., Kondo, H., Kiuchi, T., Sato, M., Mizuno, K.: Lim kinase has a dual role in regulating lamellipodium extension by decelerating the rate of actin retrograde flow and the rate of actin polymerization. The Journal of biological chemistry 286, 36,340–36,351 (2011)Google Scholar
  74. 74.
    Oser, M., Condeelis, J.: The cofilin activity cycle in lamellipodia and invadopodia. Journal of cellular biochemistry 108, 1252–1262 (2009)CrossRefGoogle Scholar
  75. 75.
    Pack, C., Saito, K., Tamura, M., Kinjo, M.: Microenvironment and effect of energy depletion in the nucleus analyzed by mobility of multiple oligomeric egfps. Biophysical journal 91, 3921–3936 (2006)CrossRefGoogle Scholar
  76. 76.
    Padrick, S.B., Rosen, M.K.: Physical mechanisms of signal integration by wasp family proteins. Annual review of biochemistry 79, 707–735 (2010)CrossRefGoogle Scholar
  77. 77.
    Parsons, J.T., Horwitz, A.R., Schwartz, M.A.: Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nature reviews. Molecular cell biology 11, 633–643 (2010)CrossRefGoogle Scholar
  78. 78.
    Peskin, C.S., Odell, G.M., Oster, G.F.: Cellular motions and thermal fluctuations: the brownian ratchet. Biophysical journal 65, 316–324 (1993)CrossRefGoogle Scholar
  79. 79.
    Pollard, T.D., Blanchoin, L., Mullins, R.D.: Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct 29, 545–576 (2000)CrossRefGoogle Scholar
  80. 80.
    Pollard, T.D., Borisy, G.G.: Cellular motility driven by assembly and disassembly of actin filaments. Cell 112(4), 453–465 (2003)CrossRefGoogle Scholar
  81. 81.
    Pollard, T.D., Cooper, J.A.: Actin, a central player in cell shape and movement. Science 326(5957), 1208–1212 (2009)CrossRefGoogle Scholar
  82. 82.
    Ponti, A., Matov, A., Adams, M., Gupton, S., Waterman-Storer, C.M., Danuser, G.: Periodic patterns of actin turnover in lamellipodia and lamellae of migrating epithelial cells analyzed by quantitative fluorescent speckle microscopy. Biophysical journal 89, 3456–3469 (2005)CrossRefGoogle Scholar
  83. 83.
    Prass, M., Jacobson, K., Mogilner, A., Radmacher, M.: Direct measurement of the lamellipodial protrusive force in a migrating cell. The Journal of cell biology 174, 767–772 (2006)CrossRefGoogle Scholar
  84. 84.
    Raynaud, F., Ambühl, M.E., Gabella, C., Bornert, A., Sbalzarini, I.F., Meister, J.J., Verkhovsky, A.B.: Minimal model for spontaneous cell polarization and edge activity in oscillating, rotating and migrating cells. Nature Physics 12, 367–373 (2016)CrossRefGoogle Scholar
  85. 85.
    Ridley, A.J., Schwartz, M.A., Burridge, K., Firtel, R.A., Ginsberg, M.H., Borisy, G., Parsons, J.T., Horwitz, A.R.: Cell migration: Integrating signals from front to back. Science 302(5651), 1704–1709 (2003)CrossRefGoogle Scholar
  86. 86.
    Ryan, G.L., Holz, D., Yamashiro, S., Taniguchi, D., Watanabe, N., Vavylonis, D.: Cell protrusion and retraction driven by fluctuations in actin polymerization: A two-dimensional model. Cytoskeleton (Hoboken, N.J.) (2017)CrossRefGoogle Scholar
  87. 87.
    Ryan, G.L., Petroccia, H.M., Watanabe, N., Vavylonis, D.: Excitable actin dynamics in lamellipodial protrusion and retraction. Biophys J 102(7), 1493–1502 (2012)CrossRefGoogle Scholar
  88. 88.
    Ryan, G.L., Watanabe, N., Vavylonis, D.: A review of models of fluctuating protrusion and retraction patterns at the leading edge of motile cells. Cytoskeleton (Hoboken, N.J.) 69, 195–206 (2012)CrossRefGoogle Scholar
  89. 89.
    Shao, D., Rappel, W.J., Levine, H.: Computational model for cell morphodynamics. Physical review letters 105, 108,104 (2010)CrossRefGoogle Scholar
  90. 90.
    Smith, B.A., Daugherty-Clarke, K., Goode, B.L., Gelles, J.: Pathway of actin lament branch formation by arp2/3 complex revealed by single-molecule imaging. PNAS 110, 1285–1290 (2013)CrossRefGoogle Scholar
  91. 91.
    Smith, M.B., Karatekin, E., Gohlke, A., Mizuno, H., Watanabe, N., Vavylonis, D.: Interactive, computer-assisted tracking of speckle trajectories in fluorescence microscopy: application to actin polymerization and membrane fusion. Biophys J 101(7), 1794–1804 (2011)CrossRefGoogle Scholar
  92. 92.
    Smith, M.B., Kiuchi, T., Watanabe, N., Vavylonis, D.: Distributed actin turnover in the lamellipodium and frap kinetics. Biophys J 104(1), 247–257 (2013)CrossRefGoogle Scholar
  93. 93.
    Svitkina, T.M., Borisy, G.G.: Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. The Journal of cell biology 145, 1009–1026 (1999)CrossRefGoogle Scholar
  94. 94.
    Taniguchi, D., Ishihara, S., Oonuki, T., Honda-Kitahara, M., Kaneko, K., Sawai, S.: Phase geometries of two-dimensional excitable waves govern self-organized morphodynamics of amoeboid cells. Proceedings of the National Academy of Sciences of the United States of America 110, 5016–5021 (2013)CrossRefGoogle Scholar
  95. 95.
    Tardy, Y., McGrath, J.L., Hartwig, J.H., Dewey, C.F.: Interpreting photoactivated fluorescence microscopy measurements of steady-state actin dynamics. Biophysical journal 69, 1674–1682 (1995)CrossRefGoogle Scholar
  96. 96.
    Theriot, J.A., Mitchison, T.J.: Actin microfilament dynamics in locomoting cells. Nature 352, 126–131 (1991)CrossRefGoogle Scholar
  97. 97.
    Tsuji, T., Miyoshi, T., Higashida, C., Narumiya, S., Watanabe, N.: An order of magnitude faster aip1-associated actin disruption than nucleation by the arp2/3 complex in lamellipodia. PLoS One 4(3), e4921 (2009)CrossRefGoogle Scholar
  98. 98.
    Van Goor, D., Hyland, C., Schaefer, A.W., Forscher, P.: The role of actin turnover in retrograde actin network flow in neuronal growth cones. PloS one 7, e30,959 (2012)CrossRefGoogle Scholar
  99. 99.
    Vitriol, E.A., McMillen, L.M., Kapustina, M., Gomez, S.M., Vavylonis, D., Zheng, J.Q.: Two functionally distinct sources of actin monomers supply the leading edge of lamellipodia. Cell Rep 11(3), 433–445 (2015)CrossRefGoogle Scholar
  100. 100.
    Vitriol, E.A., Uetrecht, A.C., Shen, F., Jacobson, K., Bear, J.E.: Enhanced egfp-chromophore-assisted laser inactivation using deficient cells rescued with functional egfp-fusion proteins. Proc Natl Acad Sci U S A 104(16), 6702–6707 (2007)CrossRefGoogle Scholar
  101. 101.
    Watanabe, N.: Inside view of cell locomotion through single-molecule: fast f-/g-actin cycle and g-actin regulation of polymer restoration. Proc Jpn Acad Ser B Phys Biol Sci 86(1), 62–83 (2010)CrossRefGoogle Scholar
  102. 102.
    Watanabe, N., Mitchison, T.J.: Single-molecule speckle analysis of actin filament turnover in lamellipodia. Science 295(5557), 1083–1086 (2002)CrossRefGoogle Scholar
  103. 103.
    Wolgemuth, C.W.: Lamellipodial contractions during crawling and spreading. Biophysical journal 89, 1643–1649 (2005)CrossRefGoogle Scholar
  104. 104.
    Xiong, Y., Huang, C.H., Iglesias, P.A., Devreotes, P.N.: Cells navigate with a local-excitation, global-inhibition-biased excitable network. Proceedings of the National Academy of Sciences of the United States of America 107, 17,079–17,086 (2010)Google Scholar
  105. 105.
    Yamashiro, S., Mizuno, H., Smith, M.B., Ryan, G.L., Kiuchi, T., Vavylonis, D., Watanabe, N.: New single-molecule speckle microscopy reveals modification of the retrograde actin flow by focal adhesions at nanometer scales. Mol Biol Cell 25(7), 1010–1024 (2014)CrossRefGoogle Scholar
  106. 106.
    Yamashiro, S., Mizuno, H., Smith, M.B., Ryan, G.L., Kiuchi, T., Vavylonis, D., Watanabe, N.: New single-molecule speckle microscopy reveals modification of the retrograde actin flow by focal adhesions at nanometer scales. Molecular biology of the cell 25, 1010–1024 (2014)CrossRefGoogle Scholar
  107. 107.
    Yang, C., Czech, L., Gerboth, S., Kojima, S.i., Scita, G., Svitkina, T.: Novel roles of formin mdia2 in lamellipodia and filopodia formation in motile cells. PLoS biology 5, e317 (2007)CrossRefGoogle Scholar
  108. 108.
    Zicha, D., Dobbie, I.M., Holt, M.R., Monypenny, J., Soong, D.Y.H., Gray, C., Dunn, G.A.: Rapid actin transport during cell protrusion. Science 300(5616), 142–145 (2003)CrossRefGoogle Scholar
  109. 109.
    Zimmermann, J., Falcke, M.: On the existence and strength of stable membrane protrusions. New Journal of Physics 15(1), 015,021 (2013)MathSciNetCrossRefGoogle Scholar
  110. 110.
    Zimmermann, J., Falcke, M.: Formation of transient lamellipodia. PloS one 9, e87,638 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Danielle Holz
    • 1
  • Laura M. McMillen
    • 1
  • Gillian L. Ryan
    • 2
  • Dimitrios Vavylonis
    • 1
    Email author
  1. 1.Department of PhysicsLehigh UniversityBethlehemUSA
  2. 2.Department of PhysicsKettering UniversityFlintUSA

Personalised recommendations